Minnesota Experience on RDM

Shongtao Dai, MnDOT
Kyle Hoegh, MnDOT
Acknowledgements

- FHWA/AASHTO
- GSSI
- MnDOT district materials and constructions
Why MnDOT is interested in?

- MnDOT Uses Cores Density for Acceptance
 - Need a tool for continuous assessment: RDM
- Longitudinal Joint deterioration
- IC and IR Implementation
 - IC&IR are QC tools
 - RDM (GPR) can be a QA tool
- RDM in 2015
MnDOT Equipment

- Push Cart Type RDM

- Vehicle Mounted RDM
RDM Principal

- **Mainline Survey:** multiple passes

- **Joint Survey:** one antenna close to joint
Equipment Calibration

- High Density Polyethylene (HDPE)
- Reported dielectric: 2.3-2.35

\[\varepsilon_{HMA} = \left(\frac{1 + \frac{A_0}{A_P}}{1 - \frac{A_0}{A_P}} \right)^2 \]
Underlying layer effect on surface measurement?

How thick does the HMA layer need to be so that the underlying layer (agg. base) has no effects?

\[h_1 = \frac{v^* \Delta t_1}{2} \]

\[v = \frac{c}{\sqrt{\varepsilon_1}} \]

\[dT \approx 0.439 \text{us} \]
Footprint area of an antenna (Fresnel Zone)?

Fr ~ 0.5 v (tr/fc)^{1/2}

D=12", Fr (Radius) ~ 3.6" (for 2.7Ghz-RDM)
Use histogram to assess uniformity and quality.

- All Data Collected
- Sampling Rate = 0.4 in/scan.
- > 26 million measurements
- Analysis based on 4 in. moving average
- Equivalent to >1 million cores
- Summary Stats
 - 93.2% median density
 - STD: 1.18
- 97.5% locations density > 90.8%
Examples: TH 52 – Left and Right Mainline

Median Density
- Right: 93.4%
- Left: 93.1%

STD: 0.92(R) and 0.96(L)

97.5% locations:
- > 91.6% (R)
- > 91.2% (L)
TH 52 – Longitudinal Joint

- Top lift Mainline vs Confined and Unconfined Joints Summary:
 - 93.5% (ML), 92.6%(CJ) and 91.4%(UCJ)
 - SD: 0.94(ML); 1.22(CJ); 1.8(UCJ)
 - Density:
 - UCJ/ML=97.7%; CJ/ML=99%
 - Core data: UCJ/ML=95.1%
 CJ/ML = 99.1%
- 97.5% locations:
 > 91.6%(ML),
 > 90.2% (CJ)
 > 87.8% (UCJ)
TH 14 – Mainline

- Comparison of Test Sections
- Mix B (3/4-) to A(1/2-): not much difference on compaction.
- Adding a roller: density slightly increased on this project.

Median Density:
- Blue: 94.1%
- Red: 94.2%
- Yellow: 93.5%
- Green: 93.3%
Core Locator for Implementation

- Automatic to identify core locations at the end of each paving day
- At low and high dielectric locations
- Ex: 10% and 90%

10% 90%
Generate core location text file and load to a GPS device to automatically guide field person to the core location for obtaining the core.

<table>
<thead>
<tr>
<th>Code</th>
<th>X-coordinate</th>
<th>Y-coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>R293.1</td>
<td>298478.7227</td>
<td>519108.2862</td>
</tr>
<tr>
<td>R294.1</td>
<td>302565.1707</td>
<td>520114.0246</td>
</tr>
<tr>
<td>R295.1</td>
<td>299279.1239</td>
<td>519298.2314</td>
</tr>
<tr>
<td>R296.1</td>
<td>299599.5422</td>
<td>519377.6685</td>
</tr>
<tr>
<td>R297.1</td>
<td>300540.5022</td>
<td>519610.8459</td>
</tr>
<tr>
<td>R298.1</td>
<td>300331.6291</td>
<td>519559.0812</td>
</tr>
<tr>
<td>R299.1</td>
<td>301378.5352</td>
<td>519818.6575</td>
</tr>
<tr>
<td>R300.1</td>
<td>301907.3905</td>
<td>519951.4897</td>
</tr>
<tr>
<td>R301.1</td>
<td>303106.5117</td>
<td>520228.2346</td>
</tr>
<tr>
<td>R302.1</td>
<td>302670.5928</td>
<td>520139.8712</td>
</tr>
<tr>
<td>R303.1</td>
<td>304480.9524</td>
<td>520289.7976</td>
</tr>
<tr>
<td>R304.1</td>
<td>304360.0461</td>
<td>520297.9872</td>
</tr>
</tbody>
</table>
- Measure dielectric constant on a gyratory specimen?
 - Establish Calibration Curve in Lab & Sensitivity Study
 - Currently use field cores for calibration: ex: 10% and 90%
 - Hope to establish calibration curve at lab in future
 - How does each component in a mixture affect dielectric constant, such as aggregate type, gradation, binder type and content?
Core Locator Application

Delrin d=6cm (2.36”)

Gyratory Measured Air voids versus Surface Dielectric

\[AV = \exp \left(-7.53 \left(3.40 \frac{1}{e^{7.97 \frac{1}{f}}} - \frac{1}{f} \right) - 1 \right) \]

\[R^2 = 0.97 \]

Measured Data
Regression Model

\[t_0 \]
\[t_2 \]
\[d=6cm \ (2.36”) \]

h
Activities

➢ Calibration of Equipment

➢ Field Testing:
 ➢ 2016: TH52 and TH14: Surveyed about 18 miles.
 ➢ 2017: I35; Th52; Th22; Th60; CR86; Th110; CSAH13 and MnROAD
 ➢ Hired American Engineering Testing (AET) to collect data
 ➢ Educating consultant and contractors on this new technology
 ➢ Testing application feasibility of vehicle mounted RDM system on construction projects.
 ➢ 2018: “Ghost” specification and core locator – 1 or 2 projects
 TH47, TH14, TH109 and TH50 so far
 Work with GSSI on software improvements

➢ Research on Laboratory Calibration
 ➢ Gyratory Specimen
RDM is a good tool for mapping a continuous coverage of the relative compaction levels (higher dielectric = higher compaction)

Histograms and general statistics can be used to give a complete assessments of the in-place compaction

Potential Uses:
- Assess compaction density and uniformity for QC/QA.
- Provide on-site feedback to contractor of high and low compaction locations that they can cross-check with differences in mix or paving strategies in those locations to determine optimal construction procedures.
- Identification of trends in the air void content maps that can be cross-checked with IC and other data to determine the most critical factors in achieving higher density.