Performance Modeling of a Highly Modified Asphalt Pavement

Bob Kluttz, Kraton Polymers
Richard Kim, North Carolina State U
Raj Dongré, Dongre Lab Services
Buzz Powell, NCAT
Richard Willis, NAPA

Northeast Asphalt User Producer Group Meeting
July 18, 2017
Outline

- What is highly modified asphalt?
- NCAT test track section performance
- AASHTOWare™ Pavement ME Design modeling
- FLEXPave™ software
- FLEXPave modeling
- Conclusions and where we go from here
What Is Highly Modified Asphalt?

Highly Modified Asphalt is exactly what it says, asphalt with double the normal amount of SBS polymer.
This gives a much denser polymer network with up to 10X rutting and fatigue cracking resistance.
National Center for Asphalt Technology Test Track

- 5 trucks, 16 h/day, 5 days/week
- Axle load: 18 kip
- Speed: 45 mph
Track cycle of 10 million ESALs simulates the design lifetime of damage in 2+ years

ESAL = Equivalent Single Axle Load = 1 pass of 18 kip axle

Highly Modified Asphalt (HiMA) project started in 2009 cycle
Part of Performance Group study—6 sections including control
Continued in 2012 cycle
Total 20 million ESALs
Control (S9) and HiMA (N7) Section Designs

Section S9 - Control
178 mm Standard Hot Mix
- 32 mm (PG 76-22; 9.5 mm NMAS; 80 Gyrations)
- 70 mm (PG 76-22; 19 mm NMAS; 80 Gyrations)
- 76 mm (PG 67-22; 19 mm NMAS; 80 Gyrations)

Section N7
145 mm Highly Modified Hot Mix
- 32 mm (7.5% SBS; 9.5 mm NMAS)
- 57 mm (7.5% SBS; 19 mm NMAS; 80 Gyrations)
- 57 mm (7.5% SBS; 19 mm NMAS; 80 Gyrations)

Dense Graded Crushed Aggregate Base
- $M_r = 85$ MPa
- $n = 0.40$

Test Track Soil
- $M_r = 200$ MPa
- $n = 0.45$

Lift thicknesses limited by 3:1 thickness:NMAS requirement

150 mm

7 in

5\(\frac{3}{4}\) in

Courtesy Prof. David Timm, Auburn U.

KRATON
Crack Maps at 17 Million ESALs

3/14 Rutting

S9 6.0 mm

2/14 Crack Maps

Lane - 9% Left wheel path - 12% Right wheel path - 21%

N7 1.6 mm

Lane - 0% Left wheel path - 0% Right wheel path - 0%
Rutting over 20 Million ESALs
N7 Crack Map at 20 Million ESALs

S9 resurfaced at 17 million ESALs

N7 cracking is superficial top-down
AASHTOWare™ Pavement ME Design

- Traditional layered elastic model
- Comprehensive input data
- Fatigue cracking model
 \[N_{f-HMA} = k_{f1}(C)(C_H)b_{f1}(\varepsilon_t)^{k_f2}b_{f2}(E_{HMA})^{k_f3} \]
- Permanent deformation model
 \[D_{p(HMA)} = \varepsilon_{p(HMA)}h_{HMA} = b_{r1}k_z\varepsilon_{r(HMA)}10^{kr1}\eta^{kr2}T^{kr3} \]
Fatigue Global Calibration Parameters

\[y = k_{f3} \left(\frac{1}{\varepsilon_0} \right)^{k_{12}} \]

\[k_{f3} = \text{modulus coefficient} \]
Fatigue Calibration Factors for Section N7

<table>
<thead>
<tr>
<th></th>
<th>k_f_1</th>
<th>k_f_2</th>
<th>k_f_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEPDG Standard Values</td>
<td>7.566E-3</td>
<td>3.9492</td>
<td>1.2810</td>
</tr>
<tr>
<td>S9 Calculated Values</td>
<td>1.4964E-2</td>
<td>3.9492</td>
<td>1.2810</td>
</tr>
<tr>
<td>N7 Calculated Values</td>
<td>7.5721E-5</td>
<td>7.3135</td>
<td>2.3655</td>
</tr>
<tr>
<td>Ratios</td>
<td>0.9762</td>
<td>0.7595</td>
<td>0.0491</td>
</tr>
<tr>
<td>N7 Adjusted Values</td>
<td>7.386E-3</td>
<td>2.9994</td>
<td>0.0630</td>
</tr>
</tbody>
</table>
Rutting Global Calibration Parameters

- k_{r1} is the y-axis intercept
- k_{r2} is the x versus y slope
- k_{r3} is the k_{r1} versus temperature slope
Rutting Calibration Factors for Section N7

<table>
<thead>
<tr>
<th></th>
<th>(k_{r1})</th>
<th>(k_{r2})</th>
<th>(k_{r3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEPDG Standard Values</td>
<td>-3.3541</td>
<td>0.4719</td>
<td>1.5606</td>
</tr>
<tr>
<td>S9 Calculated Values</td>
<td>-3.7902</td>
<td>0.4719</td>
<td>1.5606</td>
</tr>
<tr>
<td>Ratios</td>
<td>0.8045</td>
<td>0.4791</td>
<td>1.0000</td>
</tr>
<tr>
<td>N7 Adjusted Values</td>
<td>-2.6985</td>
<td>0.2261</td>
<td>1.5606</td>
</tr>
</tbody>
</table>
Predicted AC Bottom-Up Cracking

- 50% Reliability
- Specified Reliability

Bottom-Up Cracking (%)

Measurement Dates

Predicted Rutting
Predicted damage summary

<table>
<thead>
<tr>
<th>Pavement Distress</th>
<th>S9</th>
<th>N7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Permanent Deformation, mm</td>
<td>10.2</td>
<td>8.4</td>
</tr>
<tr>
<td>AC Permanent Deformation, mm</td>
<td>6.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Bottom-Up Cracking, % Area</td>
<td>18</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Measured damage summary

<table>
<thead>
<tr>
<th>Pavement Distress</th>
<th>S9</th>
<th>N7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Permanent Deformation, mm</td>
<td>6.0</td>
<td>1.6</td>
</tr>
<tr>
<td>AC Permanent Deformation, mm</td>
<td>6.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Bottom-Up Cracking, % Area</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>
Asphalt Mixture Performance Tester
AMPT Cracking Test Methods

- **Modulus**
 - Axial compression dynamic modulus test (AASHTO T 378)
 - Dynamic modulus mastercurve and time-temperature shift function

- **Cracking Resistance**
 - AMPT cyclic fatigue test (AASHTO TP 107)
 - C vs. S (damage characteristic curve)
 - Energy-based failure criterion
S-VECD Model for Cracking

These characteristic relationships remain the same under different modes of loading, different temperatures, different stress/strain amplitudes, and different loading histories.
Specimen Geometry

110 mm
38 mm
100 mm

2 gyratory specimens needed

E* Tests
Fatigue Tests
FlexPAVE™ 1.0

- Three dimensional layered viscoelastic analysis for moving loads and thermal stresses
- Fatigue performance analysis based on Viscoelastic Continuum Damage (VECD) Model
- Rutting performance analysis based on the shift model
- Support for multiple axle and multiple wheel loading
- Integrated with EICM software to capture temperature variation for thermal stress analysis and material properties
- Integrated GUI that includes pre and post processors
General Information
EICM in FlexPAVE™

Temperature Profile Input
- EICM
- EICM Text File
- Isothermal

EICM Database Temperature
- State: AL
- Year: 2014
- Day: 0
- City: DECatur
- Month: Aug

<table>
<thead>
<tr>
<th>Time/Depth (cm)</th>
<th>0</th>
<th>2.54</th>
<th>5.08</th>
<th>7.62</th>
<th>10.16</th>
<th>12.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midnight</td>
<td>17.17</td>
<td>19.56</td>
<td>21.56</td>
<td>23.22</td>
<td>24.56</td>
<td>25.67</td>
</tr>
<tr>
<td>1:00 AM</td>
<td>17.22</td>
<td>18.94</td>
<td>20.72</td>
<td>22.28</td>
<td>23.72</td>
<td>24.89</td>
</tr>
<tr>
<td>2:00 AM</td>
<td>16.11</td>
<td>18.22</td>
<td>20.06</td>
<td>21.67</td>
<td>23.06</td>
<td>24.28</td>
</tr>
<tr>
<td>3:00 AM</td>
<td>16.67</td>
<td>18.17</td>
<td>19.67</td>
<td>21.11</td>
<td>22.50</td>
<td>23.78</td>
</tr>
<tr>
<td>4:00 AM</td>
<td>16.11</td>
<td>17.78</td>
<td>19.33</td>
<td>20.78</td>
<td>22.11</td>
<td>23.39</td>
</tr>
<tr>
<td>5:00 AM</td>
<td>16.67</td>
<td>17.89</td>
<td>19.22</td>
<td>20.56</td>
<td>21.83</td>
<td>23.06</td>
</tr>
<tr>
<td>6:00 AM</td>
<td>19.44</td>
<td>19.33</td>
<td>19.89</td>
<td>20.78</td>
<td>21.78</td>
<td>22.89</td>
</tr>
<tr>
<td>7:00 AM</td>
<td>25.17</td>
<td>23.06</td>
<td>22.17</td>
<td>22.06</td>
<td>22.50</td>
<td>23.17</td>
</tr>
<tr>
<td>8:00 AM</td>
<td>30.56</td>
<td>27.39</td>
<td>25.39</td>
<td>24.33</td>
<td>24.00</td>
<td>24.11</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>35.17</td>
<td>31.39</td>
<td>28.72</td>
<td>26.94</td>
<td>25.94</td>
<td>25.50</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>38.28</td>
<td>34.83</td>
<td>31.83</td>
<td>29.61</td>
<td>28.11</td>
<td>27.17</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>39.89</td>
<td>36.50</td>
<td>33.78</td>
<td>31.61</td>
<td>29.94</td>
<td>28.76</td>
</tr>
<tr>
<td>Noon</td>
<td>41.56</td>
<td>38.29</td>
<td>35.67</td>
<td>33.39</td>
<td>31.56</td>
<td>30.17</td>
</tr>
<tr>
<td>1:00 PM</td>
<td>41.94</td>
<td>39.33</td>
<td>36.89</td>
<td>34.72</td>
<td>32.89</td>
<td>31.39</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>41.00</td>
<td>39.23</td>
<td>37.44</td>
<td>35.56</td>
<td>33.83</td>
<td>32.28</td>
</tr>
<tr>
<td>3:00 PM</td>
<td>39.00</td>
<td>38.11</td>
<td>36.94</td>
<td>35.61</td>
<td>34.17</td>
<td>32.83</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>36.83</td>
<td>36.67</td>
<td>36.06</td>
<td>35.17</td>
<td>34.11</td>
<td>32.94</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>33.06</td>
<td>34.17</td>
<td>34.44</td>
<td>34.17</td>
<td>33.36</td>
<td>32.72</td>
</tr>
<tr>
<td>6:00 PM</td>
<td>27.89</td>
<td>30.39</td>
<td>31.83</td>
<td>32.44</td>
<td>32.44</td>
<td>32.00</td>
</tr>
</tbody>
</table>
Material Properties

General Information
- Structure Name: Flexible 3-Layer Pavement
- Pavement/Lane Width (m): 3.65

Layer Properties
- Layer: AC
- Thickness (cm): 10
- Material Type: Asphalt Concrete
- Specific Gravity (optional): 2.5
- Expansion Co. (1/C): 0.00005

Strength/Modulus
- Poisson's Ratio: 0.3000
- E_filtered (KPa): 9.7369e+04
- Ref. Temp. (C): 5
- Shift Factor a1: 6.9619e-04
- Shift Factor a2: -0.1620
- Shift Factor a3: 0.7928

Import Damage Data
Import Rutting Data

Please note that FlexPAVE 1.0 uses the power function with the C11 and C12 coefficients to define damage characteristic curve instead of an exponential function.
Damage Contour
Field Validation
Validation Sections

59 asphalt mixtures, including WMA and RAP mixtures, from 55 pavement sections
FlexPAVE™ Simulation

NCAT Test Track 2009 Performance Group
FlexPAVE™ Simulation

NCAT Test Track 2009 Section N7
FlexPAVE™ Simulation

NCAT Test Track 2009 Section N7 Expanded Scale
NCAT Test Track Prediction

% Cracking Measured vs % Damage Predicted

- R
- RW
- C
- AW
- FW
- O
Cracking Performance Simulation by FlexPAVE™

- **FHWA-ALF SBS**
 - 95°C
 - 21 Days
 - 52 Hrs

- **SHRP AAD-1**
 - 8.9 Days
 - 16.8 Hrs

- **SHRP AAG-1**
 - 19 Days
 - 37.6 Hrs
Effect of Aging on Cracking

- Short-Term Aged
- Loose Mix, 95°C, 8.9 Days
- Loose Mix, 135°C, 16.8 Hr
NCHRP 09-54 Aging Procedure

- Loose mixture aging in an oven at 95°C
- Use the climate aging index (CAI) map for laboratory aging durations for specific pavement depth and age of interest in the field
NCHRP 9-54 Aging Map

Required Oven Aging Duration at 95°C to Match 8 Years of Field Aging at 20 mm Below Pavement Surface (Days)
Conclusions

- NCAT section N7 developed fine surface cracking late in its life, but forensic analysis showed that the cracking was minor top down cracking not impacting the structural integrity of the pavement.
- Highly modified asphalt may be useful in perpetual pavement design.
- Demonstrated performance up to 20 million ESALs shows that the thickness of pavement structures may be reduced while retaining or even improving long term performance.
Conclusions

- AASHTO M332 specifications (plus elastic recovery) have been effective to specify HiMA binders for commercial applications.
- Standardized test methods in increasingly common use are adequate to characterize HiMA mixtures for the purpose of pavement design.
- The current Pavement ME Design protocol is suited to designing perpetual pavements with highly modified asphalts. Relative global calibration factor adjustment with Level 1 design gives performance predictions that agree well with actual field performance relative to known structures.
Conclusions

- Both AASHTOWare Pavement ME Design™ and FlexPAVE™ are effective design tools.
- ME Design currently lacks a validated model for top-down cracking.
- FlexPAVE currently lacks a built-in aging model and so required aged material properties.
- We will be doing follow up modeling with both to compare!
Kraton Corporation and all of its affiliates, including Arizona Chemical, believe the information set forth herein to be true and accurate, but any recommendations, presentations, statements or suggestions that may be made are without any warranty or guarantee whatsoever, and shall establish no legal duty on the part of any Kraton affiliated entity. The legal responsibilities of any Kraton affiliate with respect to the products described herein are limited to those set forth in Kraton’s Conditions of Sale or any effective sales contract. NOTE TO USER: by ordering/receiving Kraton product you accept the Kraton Conditions of Sale applicable in the region. All other terms are rejected. Kraton does not warrant that the products described herein are suitable for any particular uses, including, without limitation, cosmetics and/or medical uses. Persons using the products must rely on their own independent technical and legal judgment, and must conduct their own studies, registrations, and other related activities, to establish the safety and efficacy of their end products incorporating any Kraton products for any application. Nothing set forth herein shall be construed as a recommendation to use any Kraton product in any specific application or in conflict with any existing patent rights. Kraton reserves the right to withdraw any product from commercial availability and to make any changes to any existing commercial or developmental product. Kraton expressly disclaims, on behalf of all Kraton affiliates, any and all liability for any damages or injuries arising out of any activities relating to the use of any information set forth in this publication, or the use of any Kraton products.

*KRATON and the Kraton logo are either trademarks or registered trademarks of Kraton Corporation, or its subsidiaries or affiliates, in one or more, but not all countries.

©2017 Kraton Corporation