Balanced Mix Design (BMD)
Task Force Update
FHWA Expert Task Group on Asphalt Mixtures

Dave Newcomb
Our Leader

Shane Buchanan, Oldcastle Materials Group
Task Force Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Category</th>
<th>e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dave Newcomb</td>
<td>Texas Transportation Institute</td>
<td>Academia/Research</td>
<td>d-newcomb@ttimail.tamu.edu</td>
</tr>
<tr>
<td>John Haddock</td>
<td>Purdue University</td>
<td>Academia/Research</td>
<td>jhaddock@purdue.edu</td>
</tr>
<tr>
<td>Kevin Hall</td>
<td>University of Arkansas</td>
<td>Academia/Research</td>
<td>kdhall@uark.edu</td>
</tr>
<tr>
<td>Louay Mohammad</td>
<td>Louisiana State University</td>
<td>Academia/Research</td>
<td>Louaym@lsu.edu</td>
</tr>
<tr>
<td>Brian Pfeifer</td>
<td>Illinois DOT</td>
<td>Agency</td>
<td>Brian.Pfeifer@illinois.gov</td>
</tr>
<tr>
<td>Bryan Engstrom</td>
<td>Massachusetts DOT</td>
<td>Agency</td>
<td>Brian.Pfeifer@illinois.gov</td>
</tr>
<tr>
<td>Charlie Pan</td>
<td>Nevada DOT</td>
<td>Agency</td>
<td>cpan@dot.state.nv.us</td>
</tr>
<tr>
<td>Curt Turgeon</td>
<td>Minnesota DOT</td>
<td>Agency</td>
<td>curt.turgeon@state.mn.us</td>
</tr>
<tr>
<td>Derek Nener-Plante</td>
<td>Maine DOT</td>
<td>Agency</td>
<td>derek.nener-plante@maine.gov</td>
</tr>
<tr>
<td>Eliana Carlson</td>
<td>Connecticut DOT</td>
<td>Agency</td>
<td>Eliana.Carlson@CT.gov</td>
</tr>
<tr>
<td>Howard Anderson</td>
<td>Utah DOT</td>
<td>Agency</td>
<td>handerson@utah.gov</td>
</tr>
<tr>
<td>Oak Metcalfe</td>
<td>Montana DOT</td>
<td>Agency</td>
<td>rmetcalfe@mt.gov</td>
</tr>
<tr>
<td>Robert Lee</td>
<td>Texas DOT</td>
<td>Agency</td>
<td>Robert.Lee@txdot.gov</td>
</tr>
<tr>
<td>Steven Hefel</td>
<td>Wisconsin DOT</td>
<td>Agency</td>
<td>Steven.Hefel@dot.wi.gov</td>
</tr>
<tr>
<td>Frank Fee</td>
<td>Consultant</td>
<td>Consultant</td>
<td>frank.fee@verizon.net</td>
</tr>
<tr>
<td>John D'Angelo</td>
<td>Consultant</td>
<td>Consultant</td>
<td>johndangelo@dangeloconsultingllc.com</td>
</tr>
<tr>
<td>Lee Gallivan</td>
<td>Consultant</td>
<td>Consultant</td>
<td>lee@gallivanconsultinginc.com</td>
</tr>
<tr>
<td>Richard Duval</td>
<td>FHWA - Turner Fairbank</td>
<td>FHWA Agency</td>
<td>Richard.Duval@dot.gov</td>
</tr>
<tr>
<td>Tim Aschenbrener</td>
<td>FHWA - Denver</td>
<td>FHWA Agency</td>
<td>timothy.aschenbrener@dot.gov</td>
</tr>
<tr>
<td>Andrew Hanz</td>
<td>Mathy Construction</td>
<td>Industry</td>
<td>Andrew.Hanz@mteservices.com</td>
</tr>
<tr>
<td>Chris Abadie</td>
<td>Pine Bluff S&G</td>
<td>Industry</td>
<td>abadie3522@icloud.com</td>
</tr>
<tr>
<td>Erv Dukatz</td>
<td>Mathy Construction</td>
<td>Industry</td>
<td>Ervin.Dukatz@mathy.com</td>
</tr>
<tr>
<td>Gerry Huber</td>
<td>Heritage Research</td>
<td>Industry</td>
<td>Gerald.huber@hrglab.com</td>
</tr>
<tr>
<td>Shane Buchanan</td>
<td>Oldcastle Materials</td>
<td>Industry</td>
<td>sbuchanan@oldcastlematerials.com</td>
</tr>
<tr>
<td>Anne Holt</td>
<td>Ontario Ministry of Transportation</td>
<td>Provincial Agency</td>
<td>Anne.Holt@ontario.ca</td>
</tr>
<tr>
<td>Randy West</td>
<td>NCAT</td>
<td>Research</td>
<td>westran@auburn.edu</td>
</tr>
</tbody>
</table>
• Need for Balanced Mix Design
• Define Balanced Mix Design
• Review FHWA Balanced Mix Design Task Force Efforts
 ○ Current State Agency Practice
 ○ NCHRP Problem Statement Development
 ○ Technical Brief Development on Balanced Mix Design
Need for Balanced Mix Design
1890
- Barber Asphalt Paving Company
 - Asphalt cement 12 to 15% / Sand 70 to 83% / Pulverized carbonite of lime 5 to 15%

1905
- Clifford Richardson, New York Testing Company
 - Surface sand mix: 100% passing No. 10, 15% passing No. 200, 9 to 14% asphalt
 - Asphaltic concrete for lower layers, VMA terminology used, 2.2% more VMA than current day mixes or ~0.9% higher binder content

1920s
- Hubbard Field Method (Charles Hubbard and Frederick Field)
 - Sand asphalt design
 - 30 blow, 6” diameter with compression test (performance) asphaltic concrete design (Modified HF Method)

1927
- Francis Hveem (Caltrans)
 - Surface area factors used to determine binder content; Hveem stabilometer and cohesionmeter used
 - Air voids not used initially, mixes generally drier relative to others, fatigue cracking an issue

1943
- Bruce Marshall, Mississippi Highway Department
 - Refined Hubbard Field method, standard compaction energy with drop hammer
 - Initially, only used air voids and VFA, VMA added in 1962; stability and flow utilized

1993
- Superpave
 - Level 1 (volumetric)
 - Level 2 and 3 (performance based, but never implemented)

• Design and optimum interchangeable?
 • NOT the same
• Many design binder contents, but only one truly optimum
• Is 4% air voids the right target for every mix?
• Optimum: the best binder content for performance requirements/needs, and ultimately economics
• Goal: Close to optimum
Oldcastle Survey Question:
Within the past 5 years, what type of mix performance related distress has been most evident in your mixes?

~40 companies responding from ~30 states

- Most reported distresses are related to mix durability.
- Durability related performance issues.
- New materials, new mixes
 - Polymers
 - More RAP/RAS
 - Asphalt additives
 - Etc.
- Some states doing “performance testing” during mix design and/or production to ensure performance.
- This is balanced mix design.
- Define Balanced Mix Design
- Determine the current “state of practice” of BMD
- Present approaches/concepts for immediate use
- Recommend future needs (potential research) to advance BMD approaches
- Disseminate information
• **Completed**
 ○ Definition of Balanced Mix Design
 ○ Survey of Agency Current Practice
 ✷ Laboratory Balanced Mix Design Protocols
 ✷ Field Acceptance Protocols
 ○ Research Problem Statement (RPS) Submitted to AASHTO

• **Current**
 ○ FHWA Technical Brief on Balanced Mix Design
 ✷ Draft prepared, reviewed and being revised

NEAUPG 2016
Balanced Mix Design Definition
• “Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure.”

• Basically, it consists of designing the mix for an intended application and service requirement.
Agency Practices Related to BMD

McCarthy, Callans, Quigley, and Scott, III
NCHRP Synthesis No. 492
Agency Approaches

Tim Aschenbrener and Kevin Hall

Balanced Mix Design Flowchart:
- Select Trial Gradation; Ensure Aggregate Blend Properties
- Conduct Volumetric Analysis
 - Select Design Binder Content & Volumetric Properties
 - Conduct Performance Tests
 - Rutting
 - Cracking
 - Performance Passed?
 - Yes: Conduct moisture damage test
 - No: Redesign Mix
 - Moisture Damage Passed?
 - Yes: Verify Volumetric Properties
 - No: Decrease moisture susceptibility

Performance-Modified Volumetric Design
- Conduct Volumetric Analysis
 - Initial Design Binder Content
 - Performance Tests
 - Rutting
 - Cracking
 - Performance Passed?
 - Yes: Conduct moisture damage test
 - No: Adjust mix proportions and binder content
 - Moisture Damage Passed?
 - Yes: Increase moisture susceptibility
 - No: Conduct volumetric analysis
 - Determine & report volumetric properties at design binder content

Validate JMF / Production

Time and Resources
YES
YES
NO
NO
Volumetric Design w/ Performance Verification – Superpave with verifying performance properties; volumetric properties would have to fall within existing M323 limits. Example States: Illinois, Louisiana, New Jersey, Texas, Wisconsin
Performance-Modified Volumetric Design – initial binder content set by M323/R35; perf testing modifies mixture proportions - final volumetric properties can be outside existing M323 limits. Example State: California
- **Performance Design** – conduct a suite of performance tests at varying binder contents and select the binder content from the results. Volumetrics determined as the ‘last step’ and reported –no requirements for M323 limits. Example States: New Jersey w/ draft approach.
• Texas DOT
 • Volumetric design conducted
 • Hamburg Wheel Tracking Test (HWTT) AASHTO T 324
 • Overlay Tester (OT) Tex-248-F
 • Three asphalt binder contents are used: optimum, optimum +0.5%, and optimum -0.5%.
 • The HWTT specimens are short-term conditioned.
 • The OT specimens are long-term conditioned.

Within this acceptable range (5.3 to 5.8 percent), the mixture at the selected asphalt content must meet the Superpave volumetric criteria.
Performance space diagrams show the performance of a mix related to multiple tests.

Allows the mix designer to visualize the mix performance and how to engineer the mix to provide the desired performance.

Illustrates the impact of varying mix factors on performance.

NEAUPG 2016
Need for Production Verification

Design

Optimize
- Local materials use, recycle, additives, cost, appropriate binder content
- Specific site/end use

Establish
- Performance criteria
- Potential surrogate test correlation
- Volumetric property baseline

Production

Verify
- QC testing
- Volumetrics comparison to baseline
- Surrogate (“Quick”) tests
- Performance tests at “x” frequency
BMD TF Work Products

Research Problem Statement

+

FHWA Technical Brief
• RPS prepared in June 2016
• Anticipated Results
 o 1) review of the state-of-the-practice of mix design
 o 2) review state-of-the-practice for performance testing,
 o 3) develop Recommended Practice for Balanced Mixture Design
 o 4) develop training and implementation plan and materials to move BMD ahead in State Highway Agencies (SHAs).

NCHRP Problem Statement

I. PROBLEM NUMBER
 To be assigned by NCHRP staff.

II. PROBLEM TITLE
 Development of a Recommended Practice for Balanced Asphalt Mixture Design

III. RESEARCH PROBLEM STATEMENT
 Background
 In September 2015, the FHWA Expert Task Group on Asphalt Mixture and Construction formed a Task Force on Balanced Mixture Design (BMD) to move forward changes in the way asphalt mixtures are formulated. The task group has defined BMD as “Asphalt mixture design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mixture aging, traffic, climate and location within the pavement structure.” The objective of BMD is to design asphalt mixtures for performance using a rational approach instead of relying on strictly volumetric guidelines. The Task Force has identified three types of approaches used for a Balanced Mixture Design: A) Performance Testing, B) Superpave with Adjustments Based on Performance Testing and C) Superpave with Adjustments Based on Volumetrics and Performance Testing.

~1 Million tons of HMA placed each day.
• Critical to address mix design in a more comprehensive manner

NEAUPG 2016
• Favorable response during August SOM
• Status:
 • *Ranked high*
 • *Decision not to forward to RAC/SCOR*
 • *Pursuing NCHRP 20-07 Projects*
 • *More fully develop work items*
 • *Define state of practice*
 • *Probably next year before it is forwarded to RAC/SCOR*
• Tech Brief prepared and reviewed by full ETG.

• Submitted to FHWA for publication.

Balanced Mixture Design
Approaches for Asphalt Pavement Construction

This Technical Brief provides an overview of balanced mixture design (BMD) approaches used by states in asphalt pavement construction. These approaches are still under development and this document will attempt to show its current status and some of the issues that will need to be addressed in the future.
What do We do with This?

Balanced Mix Design

Opt. AC

Set Tolerances

Table 11 Operational Tolerances

<table>
<thead>
<tr>
<th>Description</th>
<th>Test Method</th>
<th>Allowable Difference Between Trial Batch and JMF Target</th>
<th>Allowable Difference from Current JMF Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual % retained for #8 sieve and larger</td>
<td>Tex-200-F</td>
<td>Must be within master grading limits in Table 8</td>
<td>±6.01%</td>
</tr>
<tr>
<td>Individual % retained for sieves smaller than #8 and larger than #200</td>
<td>Tex-236-F</td>
<td></td>
<td>±6.01%</td>
</tr>
<tr>
<td>% passing the #200 sieve</td>
<td>Tex-236-F</td>
<td>±0.5</td>
<td>±2.01%</td>
</tr>
<tr>
<td>Asphalt binder content, %</td>
<td>Tex-207-F</td>
<td>±1.0</td>
<td>±1.5</td>
</tr>
<tr>
<td>Laboratory-mixed density, %</td>
<td>Tex-204-F</td>
<td>Note2</td>
<td>Note2</td>
</tr>
</tbody>
</table>

1. When within these tolerances, mixture production gradations may fall outside the master grading limits; however, the % passing the #200 will be considered out of tolerance when outside the master grading limits.

2. Mixture is required to meet Table 8 requirements.

QC Volumetrics

Set Volumetrics

QA Volumetrics

Some Day

QA Performance Testing
Key Foundational Points to Keep in Mind

1. “Use What Works”
2. “Eliminate What Doesn’t”
3. “Be as Simple as Possible, Be Practical, and Be Correct”
Want to know more about ASPHALT?

Join AAPT!

www.asphalttechnology.org/membership
At the 2016 AAPT Meeting:

- Leading Edge Workshop: Cracking Tests
- 5 Presentations on Cracking Tests
- Symposium: Balanced Mix Design
- 5 Presentations on High RAP/RAS
- Implementation of Specifications
- Aging Behavior
- Forum Topic: World Asphalt Market

2017 Meeting: Newport Beach, CA
March 19-27
AAPT/Al Webinar Series – Fatigue Cracking of Asphalt Pavements

Complimentary for AAPT Members!

Webinar Series Description
AAPT and the Asphalt Institute are hosting a three-part webinar series for understanding of fatigue cracking and a comprehensive review of the laboratory methods for fatigue cracking tests.