Evaluation of Temperature and Laboratory Aging on Pavement Cracking Performance Fracture Tests

Eshan Dave
Katie Haslett, Jo Daniel and Saman Salari
North East User Producer Group Meeting
Newark, Delaware
20th October 2016
Overview

- Introduction
 - Motivation and Objectives
 - DCT and SCB Fracture Tests
- Methodology and Materials
- Results
 - Temperature Effects
 - Aging Effects
- Summary & Conclusion
Balanced Mix Design

- Asphalt mix design using *performance tests* on appropriately *conditioned* specimens that address *multiple modes of distress* taking into consideration mix *aging*, *traffic*, *climate* and location within the pavement structure.
Motivation

- White House: 65 percent of America’s major roads are rated in less than good condition
- Performance tests are starting to become mature and field validation data is becoming available for developing performance related/based specifications
- Fracture testing based cracking tests are starting to get adopted
- There is need for understanding of effects of aging and temperature on fracture behavior of asphalt mixtures
Fracture Test Geometries

- Fracture tests on HMA date back to 1971

- Single-edge Notched Beam (SE(B))
- Direct Tension
- Semi-Circular Bend (SCB)
- Disk-shaped Compact Tension (DCT)

Fenix Test
Disk-Shaped Compact Tension (DCT) Test

- ASTM D7313-13
- Loading Rate:
 - Crack Mouth Opening Displacement
 - CMOD Rate = 1.0 mm/min
- Measurements:
 - CMOD
 - Load
Semi-Circular Bend (SCB) Test

- Multiple variants exist
 - Early work in Europe
 - Simultaneous cold (Marasteanu et al. – MN) and intermediate temperature (Mohamed et al. – LA) versions
 - Recent work from Al-Qadi et al. (IL) → AASHTO TP 105

- AASHTO TP 107
 - Line load control, loading rate = 50 mm/min
 - Test temperature = 25 deg. C

- Measurements:
 - Displacement
 - Load

- Outcomes
 - Fracture Energy
 - Flexibility Index (FI)
Fracture Parameters

Fracture work: Area under Load-Displacement curve

Fracture Energy, G_f: Energy required to create unit fracture surface

$$G_f = \frac{\text{Fracture Work, } S_f}{\text{Fracture Area}}$$

Flexibility Index, FI: $FI = \frac{G_f}{m}$
Current Adoption Efforts of Fracture Tests

- Semi-Circular Bend
 - LA Version Intermediate Temperature → Louisiana DOTD
 - Wisconsin for High RAM Projects (Hanz et al. NEAUPG 2015)
 - IL and MN Version at Intermediate Temperature:
 - Illinois in pilot implementation stages

- Disk-shaped Compact Tension
 - City of Chicago
 - Illinois Tollways
 - Wisconsin for High RAM Projects (Hanz et al. NEAUPG 2015)
 - Minnesota Department of Transportation
 - Pilot implementation on 7 projects in 2013
 - Multi-lab round-robin testing in 2015 (17 projects)
 - Fabrication and conditioning process effects in 2015-16 (11 projects)
 - Provisional specification is now available
Current Specifications / Adoption Approaches

- **Illinois Research on SCB Flexibility Index:**
 - *Single Test Temperature = 25 deg. C*
 - *Short term aged specimens following AASHTO R30*

- **Wisconsin High RAM Projects**
 - SCB testing at 25 deg. C
 - DCT testing at specified PG LT + 10 deg. C
 - Both SCB and DCT on AASHTO R 30 long term aged procedure
 - *5 days at 85 deg. C on compacted specimens*

- **Minnesota Specification**
 - DCT testing at 10 deg. C warmer than required 95% reliability PG LT (in other words, without 6 deg. C rounding)
 - AASHTO R30 short term aging

- **Challenges:** Is 25 deg. C temperature suitable for all locations? How to handle reheating and long term aging?
Effect of Temperature on Fracture Energy

Mix 1 = MNRoad 19
Mix 2 = US50 (RCRI)
Mix 3 = I-74
Mix 4 = AI AAPTP
Effect of Temperature is Not Uniform: PG64-22 vs. PG58-28

Fracture Energy, G_f (J/m2)

- PG58-28
- PG64-22

Temperature, T (°C)

$G_f = 627.1 \exp^{0.041 \times T}$

$G_f = 1299.3 \exp^{0.047 \times T}$

$r^2 = 0.564$
Effects of Aging on Fracture
(Braham et al., 2009)

- Fracture Energy vs. Aging Time
- Load vs. CMOD with Aging Time
- Fracture Energy vs. Aging Condition
Effect of AASHTO R30 Lab Aging (Dave et al., 2011)

+/-13% for most mixes
2 mixes showed significant difference

Section 34 ➔ SBS+PPA, NY ➔ Unmodified
Section 33 ➔ PPA and Section 35 ➔ SBS

Aging and Temperature Effects on Cracking, Eshan Dave, NEAUPG 10/20/2016
MnDOT DCT Implementation Aging Evaluation Study

Fracture Energy (J/m²)

- **Mix Design**
- **No-Reheat**
- **Reheats**

<table>
<thead>
<tr>
<th>Location</th>
<th>Mix Design</th>
<th>No-Reheat</th>
<th>Reheats</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH 59 Roundabout</td>
<td>TH 59 N. D.L.</td>
<td>TH 61 Little Marais</td>
<td>TH 61 Lutsen</td>
</tr>
<tr>
<td>PG 64-34</td>
<td>PG 58-28</td>
<td>PG 58-28</td>
<td>PG 58-28</td>
</tr>
<tr>
<td>CSAH 3</td>
<td>TH 11</td>
<td>TH 29</td>
<td>TH 62</td>
</tr>
<tr>
<td>PG 58-34</td>
<td>TH 65</td>
<td>TH 86</td>
<td>CSAH 3</td>
</tr>
<tr>
<td>PG 58-28</td>
<td>PG 58-34</td>
<td>PG 64-28</td>
<td>PG 58-28</td>
</tr>
</tbody>
</table>
Objectives

- Assess effects of long term laboratory aging on cracking (fracture) performance tests

- Determine effects of test temperature on cracking performance parameters from SCB and DCT tests

Secondary Outcomes:
- What can we learn from fracture behavior regarding asphalt mixtures?
 - Effect of RAP amount
 - Effect of binder type
Overview

- Introduction
 - Motivation and Objectives
 - DCT and SCB Fracture Tests

- Methodology and Materials

- Results
 - Temperature
 - Aging Effects

- Summary & Conclusion
Testing Matrix

Age Conditioning

<table>
<thead>
<tr>
<th>Mix</th>
<th>PG</th>
<th>RAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>PG 64-22</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30%</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>PG 64-28</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30%</td>
</tr>
</tbody>
</table>

Test Temperature Study:

<table>
<thead>
<tr>
<th>Mix</th>
<th>PG</th>
<th>RAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virginia</td>
<td>76-22</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>70-22</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>64-22</td>
<td>40%</td>
</tr>
<tr>
<td>Vermont</td>
<td>52-34</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>52-34</td>
<td>40%</td>
</tr>
</tbody>
</table>

- Short Term Aging: Plant Production
- Long Term Aging: NCHRP 09-54
- Long term oven aging of loose mix
 - Aging Temperature = 95 ºC
 - Aging Duration → Geography and structure specific
 - Current study: 0, 14 and 21 days
- All tests on plant mix, lab compacted samples
- SCB and DCT tests at multiple temperatures
 - SCB: 25, 13 and 1ºC
 - DCT: PG LT + 10 ºC
- All tests on plant mixed, plant compacted samples
Specimen Preparations

- Gyratory Specimen
- 50 mm (2 inch) Disk
- Cut disk into two halves
- Core loading holes
- Notched

Images of Gyratory Specimen, 50 mm Disk, Core loading holes, Notched specimens, DCT, and SCB.
Specimen Distribution

<table>
<thead>
<tr>
<th>NH 0% RAP</th>
<th>NH 30% RAP</th>
<th>NY 0% RAP</th>
<th>NY 30% RAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term aged</td>
<td>Short-term aged</td>
<td>Short-term aged</td>
<td>Short-term aged</td>
</tr>
<tr>
<td>Discs</td>
<td>AV</td>
<td>test</td>
<td>Discs</td>
</tr>
<tr>
<td>1.A</td>
<td>6.6%</td>
<td>SCB</td>
<td>1.A</td>
</tr>
<tr>
<td>1.B</td>
<td>6.5%</td>
<td>DCT</td>
<td>1.B</td>
</tr>
<tr>
<td>2.A</td>
<td>6.5%</td>
<td>SCB</td>
<td>2.A</td>
</tr>
<tr>
<td>2.B</td>
<td>6.3%</td>
<td>DCT</td>
<td>2.B</td>
</tr>
<tr>
<td>2.C</td>
<td>5.8%</td>
<td>DCT</td>
<td>2.C</td>
</tr>
<tr>
<td>14 days aged</td>
<td>14 days aged</td>
<td>14 days aged</td>
<td>14 days aged</td>
</tr>
<tr>
<td>Discs</td>
<td>AV</td>
<td>test</td>
<td>Discs</td>
</tr>
<tr>
<td>1.A</td>
<td>5.5%</td>
<td>Extra</td>
<td>1.A</td>
</tr>
<tr>
<td>1.B</td>
<td>5.6%</td>
<td>DCT</td>
<td>1.B</td>
</tr>
<tr>
<td>2.B</td>
<td>6.5%</td>
<td>SCB</td>
<td>2.B</td>
</tr>
<tr>
<td>2.C</td>
<td>6.3%</td>
<td>DCT</td>
<td>2.C</td>
</tr>
<tr>
<td>21 days aged</td>
<td>21 days aged</td>
<td>21 days aged</td>
<td>21 days aged</td>
</tr>
<tr>
<td>Discs</td>
<td>AV</td>
<td>test</td>
<td>Discs</td>
</tr>
<tr>
<td>1.A</td>
<td>6.5%</td>
<td>DCT</td>
<td>1.A</td>
</tr>
<tr>
<td>1.B</td>
<td>6.1%</td>
<td>SCB</td>
<td>1.B</td>
</tr>
<tr>
<td>2.A</td>
<td>6.5%</td>
<td>DCT</td>
<td>2.A</td>
</tr>
<tr>
<td>2.B</td>
<td>6.4%</td>
<td>DCT</td>
<td>2.B</td>
</tr>
<tr>
<td>2.C</td>
<td>6.3%</td>
<td>SCB</td>
<td>2.C</td>
</tr>
</tbody>
</table>
Test Conditions

- **Aging Study**
 - Plant Production (Short Term)
 - Loose mix oven aging @ 95 °C
 - 0, 14 and 21 days
 - Total: 3 conditions, 2 test types

- **Temperature Study**
 - All specimens are plant mixed, plant compacted
 - Total: 1 condition, 2 test types, 3 temperatures

\[\text{SCB: 25°C} \]
\[\text{DCT: -12 or -18°C} \]
\[\text{SCB: 25, 13 and 1°C} \]
\[\text{DCT: -12 or -18°C} \]
Overview

- Introduction
 - Motivation and Objectives
 - DCT and SCB Fracture Tests
- Methodology and Materials
- Results
 - Temperature
 - Aging Effects
- Summary & Conclusion
Temperature Study: Low Temperature Performance

- Minimal difference between VT 20% and 40% RAP mixtures
- Substantial difference between VA mixtures
VT Mixtures
Blue: 20% RAP, PG 58-34
Red: 40% RAP, PG 58-34

VA Mixtures
Green: 0% RAP, PG 76-22
Blue: 20% RAP, PG 70-22
Red: 40% RAP, PG 64-22
Effect of Temperature on SCB Results

![Graph showing SCB fracture energy at different temperatures and asphalt contents.]

- SCB Fracture Energy, J/m²
- 1 C, 13 C, 25 C
- VT 20% RAP, VT 40% RAP, VA 0% RAP, VA 20% RAP, VA 40% RAP
Effect of Temperature on Fracture Behavior at Intermediate Temperatures

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Material</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°C</td>
<td>VT 20% RAP, PG 58-34</td>
<td></td>
</tr>
<tr>
<td>13°C</td>
<td>VA 20% RAP, PG 70-22</td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>VT 20% RAP, PG 58-34</td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>VA 20% RAP, PG 70-22</td>
<td></td>
</tr>
</tbody>
</table>
VA 40% RAP, PG 64-22

Trial 1: 13°C & 50mm/min
Trial 2: 25°C & 50mm/min
Overview

- Introduction
 - Motivation and Objectives
 - DCT and SCB Fracture Tests
- Methodology and Materials
- Results
 - Temperature
 - Aging Effects
- Summary & Conclusion
Aging Study Results

- **SCB Fracture Energy at Intermediate Temperature**

![Fracture Energy Graph]

- Drop in fracture energy with increasing aging levels
- Extent of drop is not consistent with RAP amount
Effect of Aging on Fracture Behavior

Green: Short-term aged
Blue: 14 days at 95 deg. C
Red: 21 days at 95 deg. C

NH 0% RAP, PG 64-28

NH 30% RAP, PG 64-28
Aging and Temperature Effects on Cracking, Eshan Dave, NEAUPG 10/20/2016

Aging Study Results

- SCB Flexibility Index at Intermediate Temperature

![Graph showing SCB Flexibility Index at Intermediate Temperature](image-url)
Overview

- Introduction
 - Motivation and Objectives
 - DCT and SCB Fracture Tests

- Methodology and Materials

- Results
 - Temperature
 - Aging Effects

- Summary & Conclusion
Summary and Conclusions

- Effect of temperature on fracture behavior of asphalt mixtures:
 - Increasing temperature → Lower peak load (lower fracture stress) and Increased ductility
 - Non unique response between mixtures
 - Transition from ductile to brittle is mix (binder and other constituent) dependent
 - Use of single 25 deg. C for all regions may not be a good idea!
Summary and Conclusions (cont.)

- Effect of aging on fracture behavior of asphalt mixtures:
 - New draft aging protocol from NCHRP 09-54 was evaluated here
 - Big drop in cracking resistance from short term to 14 day aging, small change from 14 to 21 day aging
 - Aging substantially changes fracture behavior at intermediate temperature
 - Age conditioning should be included in cracking (fracture) performance test
Summary and Conclusions (cont.)

- Performance testing can provide insight into mixture behavior:
 - 20% and 40% VT RAP mixes showed similar cracking performance at intermediate and low temperatures
 - Sensitivity to effects of aging were comparable between 0% and 30% NH and NY mixes
 - 40% RAP VA mixture with “PG HT only” grade bumping led to substantial drop in cracking resistance
Thank you for your attention!

Acknowledgements:
UNH SURF Program
North-East High RAP Pooled Fund Study

Questions / Comments?

Contact: eshan.dave@unh.edu