Correlation between Laboratory and Plant Produced High RAP/RAS Mixtures

NEAUPG 2015 Annual Meeting
Oct. 22, 2015
Burlington, VT

Reyhaneh Rahbar Rastegar
Motivation

• Specification limitation on using recycled material

• Asphalt Recycling Advantages
 ✓ Economic
 ✓ Environmentally friendly

• Lab vs. Plant
 ✓ Performance-based design
 ✓ Comparison of PMPC and LMLC mixtures performance
Project Overview

- Project No. 15680R, funded by NHDOT

- Objectives:
 - To evaluate the properties of mixtures with RAP and RAS in HMA
 - To revise NHDOT existing specification
 - To compare laboratory and plant produced mixes

- Lab produced specimens, and binder extraction and recovery by NHDOT

- Plant produced specimens by Pike Industries, Inc.
Summary of Mixtures

- Lebanon
 - 11 Mixtures (Plant), 8 Mixtures (Lab)
 - Binder PG Grade (PG 58-28, PG 52-34)
 - Two sources for each binder grade
 - NMAS (12.5 and 19 mm)
 - Recycled Material (20% RAP, 20% RAP/RAS, 30% RAP)

- Hooksett
 - 4 Mixtures (Plant)
 - Binder PG Grade (PG 58-28, PG 64-28)
 - NMAS (9.5 and 12.5 mm)
 - Recycled Material (20% RAP, 25% RAP)
Mixture Properties

• Target Air Void (test specimen): 6% ± 0.5
• RAP Binder Grade: 81.3-19.3
• Tear off Shingles

<table>
<thead>
<tr>
<th>Mixture NMAS (mm)</th>
<th>%AC Design Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0</td>
<td>4.7-4.8</td>
</tr>
<tr>
<td>12.5</td>
<td>5.3</td>
</tr>
<tr>
<td>9.5</td>
<td>5.8-6.0</td>
</tr>
</tbody>
</table>
Testing

• Binder Testing (by NHDOT)
 ✓ Extraction and Recovery
 ✓ PG Grading
 ✓ 4mm DSR (by Gerry Reinke, Mathy Construction)

• Mixture Testing (by UNH)
 ✓ Complex Modulus
 ✓ SVECD Fatigue
 ✓ DCT testing
Testing

- Complex Modulus (AASHTO TP-62)
 - 3 replicates
 - Different Temperatures and Frequencies
 - Dynamic Modulus and Phase Angle Mastercurves

- SVECD Fatigue Testing (AASHTO TP-107)
 - 4 replicates
 - C-S and G^R-N_f
 - Simplified Viscoelastic Continuum Damage Approach
Summary of the Results
Binder Results

<table>
<thead>
<tr>
<th>Material</th>
<th>PG 58-28</th>
<th>PG 52-34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avery Lane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mc Asphalt</td>
<td>58-28</td>
<td></td>
</tr>
<tr>
<td>Mc Asphalt</td>
<td></td>
<td>52-34</td>
</tr>
<tr>
<td>Suncor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAP</td>
<td>12.5 mm</td>
<td>12.5 mm</td>
</tr>
</tbody>
</table>

High Temperature PG Grade (°C)

PG 58: 58-28
PG 52: 52-34
Binder Results

<table>
<thead>
<tr>
<th>Virgin Binder</th>
<th>RAP</th>
<th>12.5 mm</th>
<th>12.5 mm</th>
<th>19 mm</th>
<th>19 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 58-28</td>
<td></td>
<td>Mc Asphalt 58-28</td>
<td>Mc Asphalt 52-34</td>
<td>Avery Lane 58-28</td>
<td>Suncor 52-34</td>
</tr>
<tr>
<td>Avery Lane</td>
<td>Mc Asphalt</td>
<td>Mc Asphalt</td>
<td>Suncor</td>
<td>RAP</td>
<td>20% RAP</td>
</tr>
<tr>
<td>PG 52-34</td>
<td></td>
<td>Mc Asphalt 58-28</td>
<td>Mc Asphalt 52-34</td>
<td>Avery Lane 58-28</td>
<td>Suncor 52-34</td>
</tr>
</tbody>
</table>

Low Temperature PG Grade (°C)

-34.0 \(\rightarrow\) -16.0

1. **12.5 mm\:**
 - Mc Asphalt 58-28: 20% RAP
 - Mc Asphalt 52-34: 20% RAP/RAS
 - Suncor 52-34: 30% RAP

2. **20% RAP\:**
 - Mc Asphalt 58-28
 - Mc Asphalt 52-34
 - Suncor 52-34

3. **20% RAP/RAS\:**
 - Mc Asphalt 58-28
 - Mc Asphalt 52-34
 - Suncor 52-34

4. **30% RAP\:**
 - Mc Asphalt 58-28
 - Mc Asphalt 52-34
 - Suncor 52-34

5. **Avery Lane 58-28\:**
 - 20% RAP
 - 20% RAP/RAS
 - 30% RAP

6. **Suncor 52-34\:**
 - 20% RAP
 - 30% RAP
 - 20% RAP/RAS

Legend:
- LMLC
- PMPC

\[19\ mm\]

Note:

- The binder results are measured in low temperature PG grade (°C). The chart illustrates the performance of various binders and mixes under low temperature conditions, with different percentages of RAP and RAP/RAS. The results are categorized by binder type and mix composition, showing the impact on low temperature performance.
Binder Rheological Parameters

- T_{cr} (Stiffness) = Critical low temp. where $S(60) = 300$
- T_{cr} (m-slope) = Critical low temp. where $m(60) = 0.3$
- $\Delta T_{cr} = T_{cr}$ (Stiffness) − T_{cr} (m-slope)
Binder Results

<table>
<thead>
<tr>
<th>Virgin Binder</th>
<th>RAP</th>
<th>12.5 mm</th>
<th>12.5 mm</th>
<th>19 mm</th>
<th>19 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avery Lane</td>
<td>Mc Asphalt</td>
<td>Suncor</td>
<td>20% RAP</td>
<td>20% RAP/RAS</td>
<td>20% RAP</td>
</tr>
<tr>
<td>PG 58-28</td>
<td>PG 52-34</td>
<td>Mc Asphalt 58-28</td>
<td>Mc Asphalt 52-34</td>
<td>Mc Asp. 58-28</td>
<td>Avery Lane 58-28</td>
</tr>
</tbody>
</table>
Dynamic Modulus (12.5 mm)

PMPC Mixtures, 12.5 mm
- PG 52-34, 30% RAP
- PG 52-34, 20% RAP
- PG 52-34, 20% RAP/RAS
- PG 58-28, 30% RAP
- PG 58-28, 20% RAP
- PG 58-28, 20% RAP/RAS

LMLC Mixtures, 12.5 mm
- PG 52-34, 30% RAP
- PG 52-34, 20% RAP
- PG 58-28, 30% RAP
- PG 58-28, 20% RAP
Dynamic Modulus (19 mm)

PMPC Mixtures, 19 mm

LMLC Mixtures, 19 mm

Dynamic Modulus (MPa) vs. Reduced Frequency (Hz)

PG 52-34, 30% RAP
PG 52-34, 20% RAP/RAS
PG 58-28, 30% RAP
PG 58-28, 20% RAP
PG 58-28, 20% RAP/RAS

10/22/15
Dynamic Modulus, Plant vs. Lab, 12.5 mm

- **PG 52-34, 12.5 mm, 30% RAP**
 - Plant
 - Lab

- **PG 58-28, 12.5 mm, 30% RAP**
 - Plant
 - Lab

- **PG 52-34, 12.5 mm, 20% RAP**
 - Plant
 - Lab

- **PG 58-28, 12.5 mm, 20% RAP**
 - Plant
 - Lab
Dynamic Modulus, Plant vs. Lab, 19 mm

PG 52-34, 19 mm, 30% RAP

PG 58-28, 19 mm, 30% RAP

PG 52-34, 19 mm, 20% RAP/RAS

PG 58-28, 19 mm, 20% RAP/RAS
Black Space, Plant vs. Lab, (12.5 mm)

- **PG 52-34, 12.5 mm, 30% RAP**
 - Plant
 - Lab

- **PG 58-28, 12.5 mm, 30% RAP**
 - Plant
 - Lab

- **PG 52-34, 12.5 mm, 20% RAP**
 - Plant
 - Lab

- **PG 58-28, 12.5 mm, 20% RAP**
 - Plant
 - Lab

Dynamic Modulus (MPa) vs. Phase Angle (Degree) for different grades and percentages of RAP.
Black Space, Plant vs. Lab, (19 mm)

PG 52-34, 19 mm, 30% RAP

PG 52-34, 19 mm, 20% RAP/RAS

PG 58-28, 19 mm, 30% RAP

PG 58-28, 19 mm, 20% RAP/RAS

Dynamic Modulus (MPa)

Phase Angle (Degree)
Fatigue Failure Criterion

Number of cycles (N_f)

Gr

Better Performance
Fatigue Failure (12.5 mm mixtures)

Number of Cycles (Nf)

12.5 mm, PMPC

Number of Cycles (Nf)

12.5 mm, LMLC
Fatigue Failure (19 mm mixtures)

![Graph showing fatigue failure data for different mixtures and percentages of RAP and RAS.](image)
Fatigue Failure (Plant vs. Lab), 12.5 mm

PG 52-34, 12.5 mm, 30% RAP

R² = 0.77578

PG 52-34, 12.5 mm, 20% RAP

R² = 0.96596

PG 58-28, 12.5 mm, 30% RAP

R² = 0.94799

PG 58-28, 12.5 mm, 20% RAP

R² = 0.99745
Fatigue Failure (Plant vs. Lab), 19 mm

PG 52-34, 19 mm, 30% RAP

- Plant: $R^2 = 0.98874$
- Lab: $R^2 = 0.86312$

PG 58-28, 19 mm, 30% RAP

- Plant: $R^2 = 0.99879$
- Lab: $R^2 = 0.99798$

PG 52-34, 19 mm, 20% RAP/RAS

- Plant: $R^2 = 0.97716$
- Lab: $R^2 = 0.70869$

PG 58-28, 19 mm, 20% RAP/RAS

- Plant: $R^2 = 0.97716$
- Lab: $R^2 = 0.70869$
Conclusion

• Binder results
 o LMLC have warmer high and low PG temperature.
 o The binders extracted from the 19 mm mixtures have warmer temperatures than those extracted from 12.5 mm mixtures.
 o ΔT_{cr} of 19 mm and PG 52-34 mixtures are generally higher than 12.5 mm and PG 58-28, respectively.
 o Generally, ΔT_{cr} of the mixtures containing RAS are larger than those for the mixtures with RAP only.
Conclusion

- **Complex Modulus**
 - Dynamic Modulus of lab produced mixtures are higher than plant produced mixtures.
 - In most cases, lab produced mixtures show slightly more elastic behavior, less relaxation capability.
 - The variation of mixtures stiffness are as expected in terms of stiffer binder, higher recycled materials and coarser aggregate.
 - Inclusion of higher RAP increases dynamic modulus, while incorporating RAS does not follow a consistent trend.
Conclusion

- **Fatigue Cracking**
 - There is no consistent trend between Lab and plant produced mixtures, but:
 - There is larger difference between PG 58-28 plant and lab mixes than PG 52-34 mixes.
 - The fatigue performance (fatigue life) of 20% RAP and 30% RAP mixtures are similar.
 - Most 20% RAP/RAS mixes show higher G^R, but lower N_f.
Future Work

• Additional Testing and Mixtures
 ✓ DCT testing
 ✓ Binder test results
 ✓ Hooksett mixtures

• Evaluate impact of long term aging
Acknowledgement

- Dr. J. Daniel,
 Professor, University of New Hampshire
- Dr. E. Dave,
 Assistant Professor, University of New Hampshire
- New Hampshire Department of Transportation
- Pike Industries, Inc.
- Asphalt Research Group, University of New Hampshire
Thank You!

Questions?
Mixtures

<table>
<thead>
<tr>
<th>Binder PG Grade</th>
<th>Binder Source (mm)</th>
<th>NMSA</th>
<th>%Total Binder Replacement</th>
<th>% RAP Binder</th>
<th>% RAS Binder</th>
<th>PMPC (Pike)</th>
<th>LMLC (NHDOT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>58-28</td>
<td>McAphalt</td>
<td>12.5</td>
<td>18.9</td>
<td>18.9</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>McAphalt</td>
<td>12.5</td>
<td>18.5</td>
<td>7.4</td>
<td>11.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>McAphalt</td>
<td>12.5</td>
<td>28.3</td>
<td>28.3</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>McAphalt</td>
<td>19</td>
<td>20.8</td>
<td>20.8</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avery Lane</td>
<td>19</td>
<td>20.4</td>
<td>8.2</td>
<td>12.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avery Lane</td>
<td>19</td>
<td>31.3</td>
<td>31.3</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>52-34</td>
<td>McAphalt</td>
<td>12.5</td>
<td>18.9</td>
<td>18.9</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>McAphalt</td>
<td>12.5</td>
<td>18.5</td>
<td>7.4</td>
<td>11.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>McAphalt</td>
<td>12.5</td>
<td>28.3</td>
<td>28.3</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suncor</td>
<td>19</td>
<td>20.4</td>
<td>8.2</td>
<td>12.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suncor</td>
<td>19</td>
<td>31.3</td>
<td>31.3</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>58-28</td>
<td>McAphalt</td>
<td>9.5</td>
<td>21.3</td>
<td>21.3</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>McAphalt</td>
<td>12.5</td>
<td>21.3</td>
<td>21.3</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>64-28</td>
<td>McAphalt</td>
<td>9.5</td>
<td>16.4</td>
<td>16.4</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>McAphalt</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Damage Characteristic Curve (12.5 mm)

12.5 mm, PG 52-34

12.5 mm, PG 58-28
Damage Characteristic Curve (19 mm)

![Graph showing Damage Characteristic Curve for two types of pavement: 19 mm, PG 52-34 and 19 mm, PG 58-28. The graph compares the pseudo stiffness (C) with the damage (S) for different combinations of RAP (Recycled Asphalt Pavement) and RAS (Recycled Asphalt Shingles).]

- Plant, 30% RAP
- Plant, 20% RAP/RAS
- Lab, 30% RAP
- Lab, 20% RAP/RAS