Asphalt Binder and Mixture Properties Produced with REOB Modified Asphalt Binders

Thomas Bennert, Ph.D.
Rutgers University, NJ
Center for Advanced Infrastructure and Transportation (CAIT)

NEAUPG Annual Meeting
October 21st and 22nd, 2015
Burlington, VT
Acknowledgements

- Rutgers Staff
 - Chris Ericson, M.S.
 - Darius Pezeshki, M.S.
 - Ed Haas, M.S.
 - Rostyslav Shamborovskyy
 - Ed Wass Jr.
- University of Massachusetts-Dartmouth
 - TSRST Testing
- Asphalt Institute
 - DENT Testing
- Axeon Specialty Products
 - Ron Corun
Overview of Study

- Research focused on how a binder supplier would utilize REOB in asphalt binder
- Use REOB to modify stiffer asphalt binders to achieve a softer binder grade (PG64-22 and PG58-28 for this study)
 - Usage in cold temperature climates
 - Usage with higher recycled asphalt mixtures (RAP and/or RAS)
- Asphalt binders (base asphalt from Axeon - Paulsboro, NJ)
 - Neat PG64-22
 - Neat PG58-28
 - REOB modified PG58-28 (20% REOB; 80% PG70-22)
 - REOB modified PG58-28 (6% REOB; 94% PG64-22)
 - REOB modified PG64-22 (10% REOB; 90% PG70-22)
- 2 REOB Sources
- Total of 8 binders evaluated
- Mix: NJDOT approved 9.5mm NMAS, 5.4% asphalt content
Overall Workplan – Lab Testing

- Asphalt Binder Testing
 - PG grading (BBR 20 and 40 hr PAV aging)
 - Master Stiffness Curves
 - Original, RTFO, PAV 20 hr, PAV 40 hr
 - Glover-Rowe Parameter, Rheological Properties
 - DENT test (PAV aged)
- Asphalt Mixture Testing (STOA & LTOA)
 - Dynamic Modulus
 - Flow Number
 - Overlay Tester
 - Flexural Beam Fatigue
 - SCB Intermediate Temperature
 - TSRST
Binder Test Results
PG Grading (1 of 2)

<table>
<thead>
<tr>
<th>REOB Supplier</th>
<th>Target Grade</th>
<th>% REOB</th>
<th>High Temperature</th>
<th>Multiple Stress Creep Recovery (MSCR)</th>
<th>Inter. Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Orig</td>
<td>RFTO</td>
<td>58°C</td>
</tr>
<tr>
<td>N.A.</td>
<td>58-28</td>
<td>0%</td>
<td>61.3</td>
<td>66.9</td>
<td>2.81</td>
</tr>
<tr>
<td></td>
<td>64-22</td>
<td>0%</td>
<td>68.7</td>
<td>70.2</td>
<td>0.78</td>
</tr>
<tr>
<td>Supplier #1</td>
<td>58-28</td>
<td>6% REOB + 94% 64-22</td>
<td>60.5</td>
<td>60.5</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td>58-28</td>
<td>20% REOB + 80% 70-22</td>
<td>61.4</td>
<td>65.3</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>64-22</td>
<td>10% REOB + 90% 70-22</td>
<td>67.0</td>
<td>73.1</td>
<td>1.28</td>
</tr>
<tr>
<td>Supplier #2</td>
<td>58-28</td>
<td>6% REOB + 94% 64-22</td>
<td>64.5</td>
<td>64.7</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td>58-28</td>
<td>20% REOB + 80% 70-22</td>
<td>61.0</td>
<td>62.6</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td>64-22</td>
<td>10% REOB + 90% 70-22</td>
<td>66.6</td>
<td>67.0</td>
<td>1.27</td>
</tr>
</tbody>
</table>
PG Grading (2 of 2)

<table>
<thead>
<tr>
<th>Supplier</th>
<th>REOB Supplier</th>
<th>Target Grade</th>
<th>% REOB</th>
<th>Low Temperature</th>
<th>R49 (20 Hr)</th>
<th>PG Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.A.</td>
<td>58-28</td>
<td>0%</td>
<td>RFTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>m-slope</td>
<td>S (MPa)</td>
<td>m-slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64-22</td>
<td>0%</td>
<td></td>
<td>-34.4</td>
<td>-31.3</td>
</tr>
<tr>
<td></td>
<td>Supplier #1</td>
<td>58-28</td>
<td>6% REOB +</td>
<td>RFTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94% 64-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>58-28</td>
<td>20% REOB +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80% 70-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64-22</td>
<td>10% REOB +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90% 70-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supplier #2</td>
<td>58-28</td>
<td>6% REOB +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94% 64-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>58-28</td>
<td>20% REOB +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80% 70-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64-22</td>
<td>10% REOB +</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BBR ΔT_{crit} vs Aging (Source #2)
Master Stiffness (G*) Curves - Form of Master Curve (Christensen & Anderson, 2001)

- Master Stiffness (G*) curves generated using frequency sweep in the DSR
- Shape of master curve related to overall stiffness of the asphat binder
- As binders age, increase in stiffening
PG64-22 & PG76-22 in ω_0 & R-value Space

![Graph showing the relationship between crossover frequency and R-value for PG64-22 and PG76-22 asphalt binders in RTFO, 20 HR PAV, 40 HR PAV, 60 HR PAV conditions. The graph includes markers for different aging and testing conditions.]
Master Curve (R-value & Crossover Frequency) – PG58-28 Source #1
Master Curve (R-value & Crossover Frequency) – PG64-22 Source #1
Master Curve (R-value & Crossover Frequency) – PG64-22 Source #2
Glover-Rowe Parameter (G-R)

- Due to equipment and material size restraints, Ductility testing may not be available
- Rowe (AAPT, 2011) proposed the DSR master curve analysis to calculate the “Glover-Rowe” parameter
 - As G-R parameter increases, the binder is more prone to fatigue cracking
 - Correlates to both ductility and BBR ΔT_c
Glover-Rowe Parameter vs Aging
(Source #1, PG58-28)
Glover-Rowe Parameter vs Aging
(Source #1, PG64-22)

- Onset of Cracking
 - PG64-22 0% REOB - Orig
 - PG64-22 0% REOB - RTFO
 - PG64-22 0% REOB - 20 Hr PAV
 - PG64-22 0% REOB - 40 Hr PAV

- Significant Cracking
 - PG64-22 10% REOB - Orig
 - PG64-22 10% REOB - RTFO
 - PG64-22 10% REOB - 20 Hr PAV
 - PG64-22 10% REOB - 40 Hr PAV
Glover-Rowe Parameter vs Aging (Source #2, PG58-28)

- Onset of Cracking
- Significant Cracking

- PG58-28 0% REOB - Orig
- PG58-28 6% REOB - Orig
- PG58-28 0% REOB - RTFO
- PG58-28 6% REOB - RTFO
- PG58-28 0% REOB - 20 Hr PAV
- PG58-28 6% REOB - 20 Hr PAV
- PG58-28 0% REOB - 40 Hr PAV
- PG58-28 6% REOB - 40 Hr PAV

$G^\ast \cos \frac{2\pi}{\sin t}, 0.005 \text{ rads/sec} \quad 450\text{kPa}$

$G^\ast \cos \frac{2\pi}{\sin t}, 0.005 \text{ rads/sec} \quad 180\text{kPa}$

Phase Angle, degrees
Glover-Rowe Parameter vs Aging
(Source #2, PG64-22)

- Onset of Cracking
 - PG64-22 0% REOB - Orig
 - PG64-22 0% REOB - RTFO
 - PG64-22 0% REOB - 20 Hr PAV
 - PG64-22 0% REOB - 40 Hr PAV

- Significant Cracking
 - PG64-22 10% REOB - Orig
 - PG64-22 10% REOB - RTFO
 - PG64-22 10% REOB - 20 Hr PAV
 - PG64-22 10% REOB - 40 Hr PAV

\[G^* \cos^2 \sin, 0.005 \text{ rads/sec} \]

- 450kPa
- 180kPa
Glover-Rowe Parameter – 20 Hr PAV (15°C, 0.005 rad/sec)

<table>
<thead>
<tr>
<th></th>
<th>0% REOB</th>
<th>6% REOB</th>
<th>20% REOB</th>
<th>0% REOB</th>
<th>10% REOB</th>
<th>10% REOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source #1</td>
<td>PG58-28</td>
<td>14.9</td>
<td>15.2</td>
<td>98.2</td>
<td>81.4</td>
<td>96.6</td>
</tr>
<tr>
<td>Source #2</td>
<td>PG64-22</td>
<td>39.6</td>
<td>136.2</td>
<td>106.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Double Edge Notched Tension (DENT) Test – AASHTO TP113

- Test evaluates the energy required for fracturing ductile materials
 - Test measures the Work of Fracture and Critical Opening Displacement (CTOD)
 - CTOD represents ultimate elongation, or strain tolerance, in the vicinity of a crack (i.e. – notch)
 - As CTOD increases, more resistant to fracturing
- Test has been found to correlate well to field cracking performance
DENT CTOD (15°C)
Mixture Test Results
- Trap Rock aggregate
- 5.4% asphalt content; 0% RAP
- Short-term (STOA) and Long-term (LTOA) oven aged according to AASHTO R30

<table>
<thead>
<tr>
<th>Property</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Size</td>
<td>Lab Study Design</td>
</tr>
<tr>
<td>1/2" (12.5 mm)</td>
<td>100.0</td>
</tr>
<tr>
<td>3/8" (9.5 mm)</td>
<td>95.0</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>68.0</td>
</tr>
<tr>
<td>No. 8 (2.36 mm)</td>
<td>46.6</td>
</tr>
<tr>
<td>No. 16 (1.18 mm)</td>
<td>32.4</td>
</tr>
<tr>
<td>No. 30 (0.600 mm)</td>
<td>23.1</td>
</tr>
<tr>
<td>No. 50 (0.425 mm)</td>
<td>16.7</td>
</tr>
<tr>
<td>No. 100 (0.15 mm)</td>
<td>11.7</td>
</tr>
<tr>
<td>No. 200 (0.075 mm)</td>
<td>7.6</td>
</tr>
<tr>
<td>Gsb (g/cm³)</td>
<td>2.862</td>
</tr>
<tr>
<td>Gmm (g/cm³)</td>
<td>2.680</td>
</tr>
<tr>
<td>Design AV%</td>
<td>4.0</td>
</tr>
<tr>
<td>Asphalt Content (%)</td>
<td>5.4</td>
</tr>
<tr>
<td>VMA (%)</td>
<td>15.0</td>
</tr>
</tbody>
</table>
REOB
Source #1
REOB
Source #2
Flow Number (54°C) – Source #1
Flow Number (54°C) – Source #2

<table>
<thead>
<tr>
<th>Binder Grade</th>
<th>0% REOB</th>
<th>6% REOB</th>
<th>20% REOB</th>
<th>0% REOB</th>
<th>6% REOB</th>
<th>20% REOB</th>
<th>0% REOB</th>
<th>10% REOB</th>
<th>0% REOB</th>
<th>10% REOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOA</td>
<td>194</td>
<td>307</td>
<td>227</td>
<td>272</td>
<td>592</td>
<td>621</td>
<td>338</td>
<td>727</td>
<td>566</td>
<td>1000</td>
</tr>
<tr>
<td>PG58-28</td>
<td></td>
</tr>
<tr>
<td>LTOA</td>
<td></td>
</tr>
<tr>
<td>PG64-22</td>
<td></td>
</tr>
</tbody>
</table>
APA Rutting (64°C)

<table>
<thead>
<tr>
<th>Source</th>
<th>0% REOB</th>
<th>6% REOB</th>
<th>20% REOB</th>
<th>6% REOB</th>
<th>20% REOB</th>
<th>0% REOB</th>
<th>10% REOB</th>
<th>10% REOB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PG58-28</td>
<td></td>
<td></td>
<td>PG64-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>5.7</td>
<td>6.2</td>
<td>4.8</td>
<td>4.6</td>
<td>3.8</td>
<td>3.5</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Flexural Beam Fatigue – Source #1
Flexural Beam Fatigue – Source #2
Overlay Tester – Source #1

Error Bars represent one standard deviation from the Mean

<table>
<thead>
<tr>
<th>Binder Grade</th>
<th>0% REOB</th>
<th>6% REOB</th>
<th>20% REOB</th>
<th>0% REOB</th>
<th>6% REOB</th>
<th>20% REOB</th>
<th>0% REOB</th>
<th>10% REOB</th>
<th>0% REOB</th>
<th>10% REOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOA</td>
<td>529</td>
<td>226</td>
<td>51</td>
<td>271</td>
<td>235</td>
<td></td>
<td>8</td>
<td>89</td>
<td>90</td>
<td>35</td>
</tr>
<tr>
<td>PG58-28</td>
<td></td>
</tr>
<tr>
<td>LTOA</td>
<td></td>
</tr>
<tr>
<td>PG64-22</td>
<td></td>
</tr>
</tbody>
</table>
Overlay Tester – Source #2

Error Bars represent one standard deviation from the Mean

<table>
<thead>
<tr>
<th>Binder Grade</th>
<th>0% REOB</th>
<th>6% REOB</th>
<th>20% REOB</th>
<th>0% REOB</th>
<th>6% REOB</th>
<th>20% REOB</th>
<th>0% REOB</th>
<th>10% REOB</th>
<th>0% REOB</th>
<th>10% REOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOA</td>
<td>529</td>
<td>95</td>
<td>310</td>
<td>271</td>
<td>147</td>
<td>11</td>
<td>89</td>
<td>58</td>
<td>90</td>
<td>19</td>
</tr>
<tr>
<td>PG58-28</td>
<td></td>
</tr>
<tr>
<td>LTOA</td>
<td></td>
</tr>
<tr>
<td>PG64-22</td>
<td></td>
</tr>
</tbody>
</table>
Semi-Circular Bend (25°C) – Source #2

![Graph showing Jc (kJ/m²) for different percentages and samples.](image-url)
TSRST Low Temp Critical Cracking – Source #1

![Bar chart showing TSRST Critical Cracking Temperature for PG58-28 and PG64-22 asphalt mixes with different rubber contents.](chart.png)
Binder to Mixture Performance Comparisons
Comparisons were made between the binder and mixture fatigue parameters.

Only Overlay Tester showed good correlation

- Some cases, Beam Fatigue was counter intuitive to what was expected

Poor correlation between SCB J_C and binder properties
Overlay Tester (LTOA) vs BBR ΔT_{crit}

Diagram Description:
- The graph compares the Overlay Tester performance with BBR ΔT_{crit} differences.
- The x-axis represents Overlay Tester cycles, ranging from 0 to 300.
- The y-axis shows the temperature difference $T_{\text{CRIT, S}} - T_{\text{CRIT, m}}$ in °C, ranging from -30.0 to 5.0.

Data Points:
- Open circles represent 20 Hr PAV Aging.
- Filled circles represent 40 Hr PAV Aging.

Legend:
- **BBR**
 - S - Controlled
 - m - Controlled
- **Cracking Warning**
- **Cracking Limit**
Overlay Tester (LTOA) vs DENT CTOD (20 Hr PAV)

\[y = 3.1405x^{0.1901} \]

\[R^2 = 0.7868 \]

Open Symbol - Virgin Binder
Gray Filled Symbol - REOB Source #1
Black Filled Symbol - REOB Source #2
Overlay Tester (LTOA) vs Glover-Rowe Parameter (20 Hr PAV)

- Open Symbol - Virgin Binder
- Gray Filled Symbol - REOB Source #1
- Black Filled Symbol - REOB Source #2

The graph shows the relationship between Overlay Tester (cycles) and Glover-Rowe 20 Hr PAV (kPa). The fitted line equation is $y = 128.53e^{-0.008x}$ with $R^2 = 0.9176$. The points represent data from different sources.
Overlay Tester (LTOA) vs Cross-over Frequency (20 Hr PAV)

- Open Symbol - Virgin Binder
- Gray Filled Symbol - REOB Source #1
- Black Filled Symbol - REOB Source #2

The line equation is:

\[y = 0.7845x - 5.3606 \]

with a correlation coefficient of:

\[R^2 = 0.9606 \]
Low Temperature Critical Cracking – Mixture vs Binder

TSRST Low Temperature Critical Cracking (°C)

- AASHTO R29, m-slope
- AASHTO R29, Stiffness
- AASHTO R49
General Comments on REOB Work

- Degree of aging has a greater impact on REOB modified asphalt performance when compared to Neat binders
- REOB source was found influence the performance of REOB modified asphalt (i.e. – not all REOB created equal)
- REOB dosage rate has a impact on performance, but magnitude not the same for each REOB source
 - Slight differences were found between Neat and 6% REOB binders/mixtures – greater differences found at higher REOB concentrations
General Comments on REOB Work

- Stiffness and aging behavior in E* of REOB and neat binders similar
- Different ranking between fatigue cracking mixture tests
 - Almost complete reverse in ranking between Flexural Beam Fatigue (crack initiation/stiffness-based) and Overlay Tester (crack propagation)
- Low temperature TSRST performance differed based on source
 - Larger differences between REOB and neat binders for Source #2
- Binder “fatigue” tests correlated well with the Overlay Tester and were sensitive to REOB dosage
 - BBR ΔTcrit Difference
 - Cross-over frequency
 - Glover-Rowe
 - DENT CTOD
Thank you for your time!

Questions?

Thomas Bennert, Ph.D.
Rutgers University
609-213-3312
bennert@rci.rutgers.edu