Highly Modified Asphalt (HiMA) Overlays for Urban Areas

Thomas Bennert, Ph.D.
Rutgers University, NJ
Center for Advanced Infrastructure and Transportation (CAIT)

NEAUPG Annual Meeting
October 21st and 22nd, 2015
Burlington, VT
Acknowledgements

- Rutgers Staff
 - Chris Ericson, M.S.
 - Darius Pezeshki, M.S.
 - Ed Wass
- Axeon Specialty Products
 - Ron Corun
 - Frank Fee
Urban Pavements

- Northeast urban pavements generally contain heavy, slow moving traffic
 - Biggest cost during rehabilitation are utilities and user delays
- Years of multiple overlays, combined with utility work, result in faulted pavement surfaces requiring variability thickness to maintain cross slope and smoothness
Thin lift asphalt overlays provides a means to preserve the pavement while improving the structural and functional properties of the pavement surface

- Higher AC% for fatigue
- Finer aggregate and lower in-place air voids for impermeability
- Faster construction and more flexibility with respect to handwork and leveling
Project Location: 1st Avenue in NYC

- 1st Avenue in Manhattan is 30 year old 18” thick PCC pavement
- Cost of total replacement far beyond NYC DOT budget for a number of reasons....
1st Avenue in NYC – Underground Utilities

- Utilities beneath the pavement
 - Gas lines
 - Water lines
 - Sewer lines
 - Steam line
- Removing the PCC would most likely damage the utilities
 - NYC DOT tries not to use compaction with vibration when paving streets
 - After paving projects are completed NYC DOT tests utilities for leaks
- Funding not available to replace PCC pavement and the utilities
NYC is planning to improve bus service with an new bus lane on 1st Avenue and also add a bike lane.

Question – How to rehabilitate 1st Avenue?
Rehabilitation Plan

- Rehabilitation Design
 - Micro-mill existing PCC pavement
 - Patch areas as required
 - Crack seal as required
 - Place PG 76-22 tack coat and Mirafi PGMG4 fabric
 - Overlay with 1 ½” HPTO mix with HiMA asphalt binder
 - Added Evotherm warm mix additive to lower mix temperatures and improve workability
 - Produced mix at 300°F
- Project completed Sept 2013
1st Avenue Micro-Milling
1st Avenue Crack Sealing and Patching
1st Avenue Tack Coat and Fabric
- Mixture designed after NJDOT’s High Performance Thin Overlay (HPTO)
 - $N_{des} = 50$ gyrations
 - VMA > 18%
 - APA rutting < 4.0 mm
 - Overlay Fatigue > 700 cycles
 - Added for this project to ensure fatigue cracking resistance
HiMA vs Typical NYC HMA

- HiMA sampled during production and compared to NYC Surface Course mixture
 - NYC mix sampled from same asphalt plant prior to 1st Avenue project

<table>
<thead>
<tr>
<th>NYC Surface Course Mixture vs HiMA</th>
<th>Sieve Number</th>
<th>Opening Size (mm)</th>
<th>NYC Surface Mix</th>
<th>Highly Modified Asphalt (HiMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0"</td>
<td>50.00</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>1.5"</td>
<td>37.50</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>1.0"</td>
<td>25.00</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>3/4"</td>
<td>19.00</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>1/2"</td>
<td>12.50</td>
<td>98.4</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>3/8"</td>
<td>9.50</td>
<td>92.4</td>
<td>99.4</td>
<td></td>
</tr>
<tr>
<td>1/4"</td>
<td>6.39</td>
<td>73.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 4</td>
<td>4.75</td>
<td>59.5</td>
<td>69.5</td>
<td></td>
</tr>
<tr>
<td>1/8"</td>
<td>3.15</td>
<td>43.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 8</td>
<td>2.36</td>
<td>36.8</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td># 16</td>
<td>1.18</td>
<td>26.7</td>
<td>26.9</td>
<td></td>
</tr>
<tr>
<td># 30</td>
<td>0.60</td>
<td>20.8</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td># 50</td>
<td>0.30</td>
<td>15.2</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td># 100</td>
<td>0.15</td>
<td>9.7</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td># 200</td>
<td>0.075</td>
<td>6.5</td>
<td>3.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PG Grade Information (After Extraction and Rotavap Recovery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous PG Grade</td>
</tr>
<tr>
<td>Asphalt Content (%)</td>
</tr>
</tbody>
</table>
Asphalt Pavement Analyzer

- AASHTO T340
- 100 lb. wheel load; 100 psi hose pressure
- Tested at 64°C (148°F) for 8,000 cycles
- Samples at specified air voids
- APA Rutting < 4.0 mm to pass
APA Rutting Results

64°C Test Temp.; 100psi Hose Pressure; 100 lb Load Load

APA Rutting @ 8,000 Cycles

HiMA (9/20/13) = 1.92 mm (Std Dev. = 0.38 mm)

APA Criteria ≤ 4 mm Rutting

Number of Loading Cycles
AMPT Flow Number @ 54°C

![Bar chart showing AMPT flow number comparison between NuStar HiMA (Unaged) and Current NYC Mix (Unaged). The chart indicates that NuStar HiMA (Unaged) has a significantly higher AMPT flow number (982 cycles) compared to Current NYC Mix (Unaged) (405 cycles).]
- Sample size: 6” long by 3” wide by 1.5” high
- Loading: Continuously triangular displacement 5 sec loading and 5 sec unloading
- Definition of failure
 - Discontinuity in Load vs Displacement curve
Overlay Tester Results

<table>
<thead>
<tr>
<th>Binder and Aging Condition</th>
<th>STOA HiMA</th>
<th>LTOA</th>
<th>STOA Current NYC Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue Life (cycles)</td>
<td>> 5,000</td>
<td>4,750</td>
<td>39</td>
</tr>
</tbody>
</table>
Flexural Beam Fatigue

- Flexural Beam Device, AASHTO T321
- Test mixes ability to withstand repeated bending
- Run at strain controlled mode to simulate bending/deformation in the field
Flexural Beam Fatigue Results

\[
N_{f,50\%} = k_1 \left(\frac{1}{\varepsilon_t} \right)^{k_2} \left(\frac{1}{E_0} \right)^{k_3}
\]

- **HiMA - LTOA**
- **Current NYC Mix - STOA**

- **Current NYC Mix - Only Short Term Aged**
1st Avenue Finished HiMA Pavement – September 2013
Conclusions

- Urban pavement systems provide a significant challenge to rehabilitate due to the multiple construction constraints
- Thin lift asphalt mixtures provide a structural and functional asphalt overlay system to help preserve the underlying pavement structure
- For NYC 1st Avenue, a highly modified asphalt (HiMA) was utilized to minimize rutting and fatigue cracking potential
 - WMA additive was used to help achieve low air voids without using vibratory mode on compactor
- 2 years after construction, pavement looks in great conditions – with no utility cuts yet!!!
Thank you for your time!
Questions?

Thomas Bennert, Ph.D.
Rutgers University
732-445-5376
bennert@rci.rutgers.edu