TPF-5(230)
Evaluation of Plant-Produced High-Percentage RAP Mixtures in the Northeast

Dr. Jo Sias Daniel

Northeast Asphalt User/Producer Group Meeting
October 22, 2014
Research Team

University of New Hampshire
Dr. Jo Sias Daniel, PE (Project PI)

University of Massachusetts Dartmouth
Dr. Walaa Mogawer, PE

Rutgers University
Dr. Tom Bennert, PE

NC State University
Dr. Y. Richard Kim, PE
Participants

- New Hampshire (NHDOT) - Lead Agency
- Maryland (MDOT)
- New Jersey (NJDOT)
- New York (NYSDOT)
- Pennsylvania (PennDOT)
- Rhode Island (RIDOT)
- Virginia (VDOT)
- Federal Highway Administration (FHWA)
Project Objective

Evaluate the performance of plant-produced RAP mixtures (in the laboratory and field) in terms of low temperature cracking, fatigue cracking and moisture sensitivity.
Project Status

• Phase I (2010 season): Interim report completed.

• Phase II (2011 season): Testing and data analysis almost completed. Interim report will be completed late winter.

• Phase III (2013 season): laboratory study. Testing and analysis almost completed. Interim report will be completed by end of the year.

• Silo Storage Study Additional Task: Testing new set of virgin mixtures from Phase II, will be completed next year.
Phase I Mixtures: 2010 Production

<table>
<thead>
<tr>
<th>Plant</th>
<th>NMAS (mm)</th>
<th>PG Grade</th>
<th>RAP Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Callanan NY</td>
<td>12.5</td>
<td>64-22</td>
<td>x</td>
</tr>
<tr>
<td>(drum)</td>
<td></td>
<td>58-28</td>
<td></td>
</tr>
<tr>
<td>Pike VT</td>
<td>9.5</td>
<td>58-28</td>
<td>x</td>
</tr>
<tr>
<td>(batch)</td>
<td></td>
<td>52-34</td>
<td>x</td>
</tr>
<tr>
<td>Pike NH</td>
<td>12.5</td>
<td>64-28</td>
<td>x</td>
</tr>
</tbody>
</table>
Phase I Conclusions

• Specimen preparation matters (PMLC vs PMPC)
• Softer binder grade effective in some cases, not in others
• Impact of plant production parameters
 – Mixing temperature
 – Silo storage time
Phase II Mixtures: 2011 Production

- Silo Storage Study
 - NY 12.5 mm mixture with PG 64-22
 - Virgin: 0, 2.5, 5.0, 7.5 hours storage (~340 F)
 - 25% RAP: 0, 2.5, 5.0, 7.5, 10.0 hours storage (~340 F)

- NH mixtures – field sections
 - PG 58-28: 0%, 15%, 25% RAP
 - PG 52-34: 25%, 30%, 40% RAP

- VA mixtures
 - PG 76-22: 0% RAP
 - PG 70-22: 20% RAP
 - PG 64-22: 30%, 40% RAP
Silo Storage Study

- 25% RAP mixtures
 - Increase in stiffness with longer storage times
 - Observed in binder and mixture testing
 - Implies additional aging is occurring in silo
 - Can’t separate aging vs additional blending

- **FAIL**
Additional Silo Storage Study Task

• Replacement NY PG 64-22 virgin mixture has been produced
 – 0, 2.5, 5, 7.5 hr silo storage times
• Mixture: Plant compacted and lab compacted (reheated) specimens
 – \(|E^*|\), S-VECD fatigue, TSRST
• Binder: Extracted and recovered from mixtures and RAP, and virgin binder
 – Continuous PG grading, CCT
• Pavement performance analysis using LVECD approach developed under FHWA PRS project
Phase III Laboratory Mixtures

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Asphalt content</th>
<th>RAP Content (total weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>NH Phase I</td>
<td>-0.5%</td>
<td>PG 64-28</td>
</tr>
<tr>
<td></td>
<td>optimum</td>
<td>PG 64-28</td>
</tr>
<tr>
<td></td>
<td>+0.5%</td>
<td>-</td>
</tr>
</tbody>
</table>
Phase III Testing

• Binder Testing
 – PG grading including CCT
 – G* master curves

• Mixture Testing
 – Volumetrics at N_{des}
 – $|E^*|$
 – S-VECD fatigue
 – Triaxial Stress Sweep for rutting
 – TSRST

• Pavement Performance Analysis using LVECD
Pavement Analysis

<table>
<thead>
<tr>
<th></th>
<th>ESAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>Design Velocity (mph)</td>
<td>60</td>
</tr>
<tr>
<td>AADTT</td>
<td>2000</td>
</tr>
<tr>
<td>Pressure Distribution</td>
<td>Constant</td>
</tr>
<tr>
<td>Contact Area</td>
<td>Rectangular</td>
</tr>
<tr>
<td>Aspect Ratio (length/width)</td>
<td>11/7</td>
</tr>
<tr>
<td>Tire Pressure (psi)</td>
<td>110</td>
</tr>
<tr>
<td>Growth Type</td>
<td>No Growth</td>
</tr>
<tr>
<td>Lane Distribution Factor</td>
<td>1</td>
</tr>
</tbody>
</table>
Thin Pavement-RAP% Effect

(a) Graph showing the number of failure points over time for NH6400-opt-Thin, NH6420-opt-Thin, and NH6440-opt-Thin.

(b) Graph showing the number of failure points over time for NH5820-opt-Thin and NH5840-opt-Thin.

Graphs represent the trend of failure points over time for different thin pavement RAP% effects.
Thin Pavement-Binder Content Effect

(c) NH6420-opt-Thin
(d) NH6440-opt-Thin

Number of failure points vs. Time (Month)
Thin Pavement—Softer Base Binder Effect

![Graph showing number of failure points over time for NH5820-opt-Thin and NH6420-opt-Thin.](e)

![Graph showing number of failure points over time for NH5840-opt-Thin and NH6440-opt-Thin.](f)
Thick Pavement-RAP% Effect

(a) NH6400-opt-Thick
(b) NH5820-opt-Thick
(c) NH6420-opt-Thick
(d) NH6440-opt-Thick

Number of failure points vs. Time (Month) for different RAP percentages:
- 0% RAP
- 40% RAP

Graphs showing the effect of RAP percentage on the number of failure points over time.
Thick Pavement-Binder Content Effect

(c) NH6420-opt-Thick
NH6420opt-Thick
Optimum

(d) NH6440-opt-Thick
NH6440opt-Thick
NH6440+opt-Thick
Optimum+0.5%
Optimum

Optimum
Thick Pavement - Softer Base Binder Effect

(e) PG 58-28

(f) PG 58-28
Phase III Preliminary Conclusions

• Factors that improved fatigue resistance decreased rutting resistance
• Balance possible to produce mix that performs well
• Softer base binder and thicker layers accommodate higher RAP levels
Future Work

• Silo Storage Study
 – additional task
 – more extended study in future

• Additional plant produced mixtures and evaluation of field performance