TPF-5(230)
Evaluation of Plant-Produced High-Percentage RAP Mixtures in the Northeast

Dr. Jo Sias Daniel

Northeast Asphalt User/Producer Group Meeting
October 24, 2012
Research Team

University of New Hampshire
Dr. Jo Sias Daniel, PE (Project PI)

University of Massachusetts Dartmouth
Dr. Walaa Mogawer, PE

Rutgers University
Dr. Tom Bennert, PE

NC State University
Dr. Y. Richard Kim, PE
Current Participants

- New Hampshire (NHDOT) - Lead Agency
- Maryland (MDOT)
- New Jersey (NJDOT)
- New York (NYSDOT)
- Pennsylvania (PennDOT)
- Rhode Island (RIDOT)
- Virginia (VDOT)
- Pending: Federal Highway Administration (FHWA)
Project Objectives

• Evaluate the performance of plant-produced RAP mixtures (in the laboratory and field) in terms of low temperature cracking, fatigue cracking and moisture sensitivity.

• Provide further understanding of the blending that occurs between RAP and virgin binder in plant-produced mixtures.

• Refine fatigue failure criteria for RAP mixtures that can be used in the Simplified Viscoelastic Continuum Damage (S-VECD) model.
High RAP Pooled Fund Study

- Contractors have volunteered to produce mixtures at different RAP contents
- Mixtures sampled and taken to lab for testing
- SGC specimens compacted at time of production
- Data collected on plant operations, raw material info, placement location & conditions (field cores if possible)
Testing

- Recovered Binder
 - PG grade
 - CCT
 - ABCD
 - 4 mm diameter DSR

- Mixture
 - Dynamic Modulus
 - Hamburg & TSR
 - Low Temperature Creep & Strength
 - Fatigue (AMPT S-VECD protocol): crack initiation
 - Overlay Tester: crack propagation
 - Beam Flexure
Project Timeline

• Year 1: Production of Phase I mixtures, laboratory testing and data analysis.

• Year 2: Phase II mixtures produced, continuation of testing, data analysis, monitoring and construction of field sections, and refinement of fatigue failure criterion.

• Year 3: Final Phase II mixtures produced, completion of testing, monitoring field sections, data analysis and synthesis, and preparation of final report.
Outline

• Summary of completed Phase I testing
 – Stiffness
 – Fatigue
 – Low Temperature

• Phase II Silo storage study
 – Extracted binder
 – Stiffness
Phase I Mixtures: 2010 Production

<table>
<thead>
<tr>
<th>Plant</th>
<th>NMAS (mm)</th>
<th>PG Grade</th>
<th>RAP Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Callanan NY (drum)</td>
<td>12.5</td>
<td>64-22</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58-28</td>
<td></td>
</tr>
<tr>
<td>Pike VT (batch)</td>
<td>9.5</td>
<td>58-28</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52-34</td>
<td>x</td>
</tr>
<tr>
<td>Pike NH (drum)</td>
<td>12.5</td>
<td>64-28</td>
<td>x</td>
</tr>
</tbody>
</table>
Phase I: Published Results Summary

• AAPT 2012 by Mogawer, et al.
• Increased RAP generally increased stiffness
• Increased RAP decreased resistance to crack propagation (OT)
• Softer binder grade effective in some cases for mitigating increase in stiffness and cracking (OT)
• Apparent effect of plant production (silo storage, temperature) on stiffness
• Reheated materials stiffer, effect of RAP and/or silo storage time
Phase I: Current Results Summary

• Fatigue (AMPT S-VECD): crack initiation
• Low Temperature
 – Extracted Binder
 – Low Temperature creep and strength
 – TSRST
• NY Mixtures shown
Fatigue Life Prediction NY PG 64-22
Endurance Limit for NY Mixtures PG 64-22

Endurance Limit at Frequency of 10 Hz (micro-strain)

Percent RAP

Endurance Limit at Frequency of 10 Hz (micro-strain)

Percent RAP
SVECD Fatigue Summary

• Rankings change depending on strain level. Higher RAP better at low strains
• Softer binder grade decreases slope of N_f curve
• Higher RAP contents increase endurance limit
Low Temp Extracted Binder Results

Temperature (°C)

Critical Cracking Temp
Low Continuous PG-grade
ABCD Cracking Temp. (as recovered)
ABCD Cracking Temp. (PAV aged)
Low Temp Mixture Testing Results

<table>
<thead>
<tr>
<th></th>
<th>NYd00</th>
<th>NYd20</th>
<th>NYd30</th>
<th>NYd40</th>
<th>NYb30</th>
<th>NYb40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSRST</td>
<td>-10</td>
<td>-11</td>
<td>-9</td>
<td>-10</td>
<td>-7</td>
<td>-7</td>
</tr>
<tr>
<td>TCMODEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-20.4 -19.78 -17.88 -23.32 -21.49
Testing and Analysis Parameters

<table>
<thead>
<tr>
<th>Method</th>
<th>Initial Temp (°C)</th>
<th>Cooling Rate (°C/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder CCT</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>ABCD</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>TCMODEL (mix)</td>
<td>10</td>
<td>5.6</td>
</tr>
<tr>
<td>TSRST</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
Impact of Cooling Rate
TCMODEL: NY40% PG64-22

Thermal Stress (psi) vs. Temperature °C
- F/L=1.0, 5C, 1 C/hr
- F/L=1.0, 5C, 2 C/hr
- F/L=1.0, 5C, 5.6 C/hr
- F/L=1.0, 5C, 10 C/hr
Impact of Initial Temperature

TCMODEL: NY40% PG64-22

Thermal Stress (psi) vs. Temperature °C

- F/L=1.0, 10C, 5.6 C/hr
- F/L=1.0, 5C, 5.6 C/hr
- F/L=1.0, 0C, 5.6 C/hr
- F/L=1.0, -5C, 5.6 C/hr
TCMODEL: NY Virgin PG 64-22

Cracking Temperature, C

Cooling Rate C/hr

1 2 5.6 10

0 1 2 5.6 10

10C 5C 0C -5C
Low Temperature Summary

• Generally warmer cracking temperatures with increase in RAP content
• Softer virgin binder may help mitigate
• Impact of starting temperature and cooling rate used for testing and analysis
• Further investigation and analysis continuing
Silo Storage Study

- Callanan 12.5 mm mixture with PG 64-22
 - Virgin: 0, 2.5, 5.0, 7.5 hours storage (~340 F)
 - 25% RAP: 0, 2.5, 5.0, 7.5, 10.0 hours storage (~340 F)
- Mix testing
 - Plant compacted specimens
 - Loose mix collected and compacted in lab
 - $|E^*|$, fatigue, TSRST
- Binder extracted & recovered from plant compacted specimens
 - PG grading, 4 mm $|G^*|$
 - Special thanks to Gerry Reinke
High Temp Grade 25% RAP Recovered
LOW TEMP GRADE 25% RAP RECOVERED BINDER

-26.5
-27.0
-27.5
-28.0
-28.5
-29.0
-29.5

Low Temp PG Grade, C

1 2 3 4 5

25% RAP, 0 HR
25% RAP, 2.5 HR
25% RAP, 5 HR
25% RAP, 7.5 HR
25% RAP, 10 HR
|E*|, MPa

Plant Compacted Dynamic Modulus: 25% RAP

<table>
<thead>
<tr>
<th>Reduced Frequency, Hz</th>
<th>25% RAP, 0 hr, PC, 6.6% AV</th>
<th>25% RAP, 2.5 hr, PC, 6.5% AV</th>
<th>25% RAP, 5 hr, PC, 6.0% AV</th>
<th>25% RAP, 7.5 hr, PC, 5.8% AV</th>
<th>25% RAP, 10 hr, PC, 5.5% AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00E-03</td>
<td>1.00E+02</td>
<td>1.00E+03</td>
<td>1.00E+04</td>
<td>1.00E+05</td>
<td>1.00E+06</td>
</tr>
<tr>
<td>1.00E-02</td>
<td>1.00E+03</td>
<td>1.00E+04</td>
<td>1.00E+05</td>
<td>1.00E+06</td>
<td>1.00E+07</td>
</tr>
<tr>
<td>1.00E-01</td>
<td>1.00E+04</td>
<td>1.00E+05</td>
<td>1.00E+06</td>
<td>1.00E+07</td>
<td>1.00E+08</td>
</tr>
<tr>
<td>1.00E+00</td>
<td>1.00E+05</td>
<td>1.00E+06</td>
<td>1.00E+07</td>
<td>1.00E+08</td>
<td>1.00E+09</td>
</tr>
<tr>
<td>1.00E+01</td>
<td>1.00E+06</td>
<td>1.00E+07</td>
<td>1.00E+08</td>
<td>1.00E+09</td>
<td>1.00E+10</td>
</tr>
<tr>
<td>1.00E+02</td>
<td>1.00E+07</td>
<td>1.00E+08</td>
<td>1.00E+09</td>
<td>1.00E+10</td>
<td>1.00E+11</td>
</tr>
<tr>
<td>1.00E+03</td>
<td>1.00E+08</td>
<td>1.00E+09</td>
<td>1.00E+10</td>
<td>1.00E+11</td>
<td>1.00E+12</td>
</tr>
<tr>
<td>1.00E+04</td>
<td>1.00E+09</td>
<td>1.00E+10</td>
<td>1.00E+11</td>
<td>1.00E+12</td>
<td>1.00E+13</td>
</tr>
<tr>
<td>1.00E+05</td>
<td>1.00E+10</td>
<td>1.00E+11</td>
<td>1.00E+12</td>
<td>1.00E+13</td>
<td>1.00E+14</td>
</tr>
<tr>
<td>1.00E+06</td>
<td>1.00E+11</td>
<td>1.00E+12</td>
<td>1.00E+13</td>
<td>1.00E+14</td>
<td>1.00E+15</td>
</tr>
<tr>
<td>1.00E+07</td>
<td>1.00E+12</td>
<td>1.00E+13</td>
<td>1.00E+14</td>
<td>1.00E+15</td>
<td>1.00E+16</td>
</tr>
<tr>
<td>1.00E+08</td>
<td>1.00E+13</td>
<td>1.00E+14</td>
<td>1.00E+15</td>
<td>1.00E+16</td>
<td>1.00E+17</td>
</tr>
<tr>
<td>1.00E+09</td>
<td>1.00E+14</td>
<td>1.00E+15</td>
<td>1.00E+16</td>
<td>1.00E+17</td>
<td>1.00E+18</td>
</tr>
<tr>
<td>1.00E+10</td>
<td>1.00E+15</td>
<td>1.00E+16</td>
<td>1.00E+17</td>
<td>1.00E+18</td>
<td>1.00E+19</td>
</tr>
</tbody>
</table>
Lab Compacted Dynamic Modulus: 25% RAP

| Reduced Frequency, Hz | |E*|, MPa |
|----------------------|------------------------------|
| 25% RAP | 0 hr, LC |
| 25% RAP | 2.5 hr, LC |
| 25% RAP | 5 hr, LC |
| 25% RAP | 7.5 hr, LC |
| 25% RAP | 10 hr, LC |
Lab- versus Plant-Compacted Dynamic Modulus

RAP Comparison

% of LC to PC Dynamic Modulus

Temperature (Celsius) and Frequency (Hz)
TSRST Results

Critical Temperature, °C

Silo Storage, hrs

-16.5
-17
-17.5
-18
-18.5
-19
-19.5
-20
-20.5
-21

0 2.5 5 7.5 10
25% RAP Silo Storage Summary

- Stiffening of binder with increase in storage time
- General stiffening trend with increase in storage time for mix
- Reheat mixtures stiffer than plant compacted but difference decreases with storage time
High Temp Grade Virgin Recovered

<table>
<thead>
<tr>
<th>RTFO Based High PG, C</th>
<th>Silo Storage Time (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.0</td>
<td>0</td>
</tr>
<tr>
<td>79.0</td>
<td>2.5</td>
</tr>
<tr>
<td>76.0</td>
<td>5</td>
</tr>
<tr>
<td>73.0</td>
<td>7.5</td>
</tr>
</tbody>
</table>
LOW TEMP GRADE VIRGIN MIX RECOVERED BINDER

0 RAP, 0 HR

0 RAP, 2.5 HR

0 RAP, 5 HR

0 RAP, 7.5 HR
COMPLEX BINDER MODULUS AT +20°C REFERENCE TEMPERATURE

- 05-18-12-H 0 RAP, 0 hr
- 05-18-12-S 0 RAP, 2.5 hr
- 05-18-12-T 0 RAP, 5 hr
- 05-18-12-U 0 RAP, 7.5 hr
COMPLEX BINDER MODULUS AT +20°C REFERENCE TEMPERATURE

Complex Modulus, G^*, Pa

REDUCED FREQUENCY, radians/sec

05-18-12-H 0 RAP, 0 hr
05-18-12-S 0 RAP, 2.5 hr
05-18-12-T 0 RAP, 5 hr
05-18-12-U 0 RAP, 7.5
07-10-12-Q 0 RAP, 7.5 hr RETEST
07-10-12-M 0 RAP, 0 hr RETEST
Plant Compacted Dynamic Modulus: Virgin

| Reduced Frequency, Hz | $|E^*|$, MPa |
|-----------------------|------------|
| 0 RAP, 0 hr, PC, 6.8% AV |
| 0 RAP, 2.5 hr, PC, 6.1% AV |
| 0 RAP, 5 hr, PC, 6.7% AV |
| 0 RAP, 7.5 hr, PC, 7.4% AV |
Lab Compacted Dynamic Modulus: Virgin

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E*</td>
<td>MPa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Reduced Frequency, Hz

Lab Compacted Dynamic Modulus: Virgin

- 0 RAP, 0 hr, LC
- 0 RAP, 2.5 hr, LC
- 0 RAP, 5 hr, LC
- 0 RAP, 7.5 hr, LC
So, what happened?
Continuing work

• Phase II mixtures
 – NH mixtures – field sections
 – VA mixtures (higher PG grades)
• New virgin silo storage study mixtures
• NCSU work refining fatigue criterion for RAP mixtures in SVECD approach
• Low temperature analysis, actual cooling rates and temperatures
• Additional mixtures: impact of asphalt content
Questions?