NCHRP 9-43
Mix Design Practices for Warm Mix Asphalt

Ramon Bonaquist, P.E.
Chief Operating Officer
Advanced Asphalt Technologies, LLC
Outline

• Objective and Approach
• Major Conclusions and Products
• Proposed Appendix to AASHTO R 35
• Recommended Additional Research
Objective

• To adapt laboratory mixture design and analysis procedures to WMA
 – Compatible with HMA procedures
 – Address wide range of warm mix processes
• Current
• Future
Approach

• Preliminary Procedure
 ✓ Focus Experimental Work

• Phase I Experiments
 ✓ Reheating
 ✓ Binder Grade
 ✓ RAP Mixing
 ✓ Short-Term Conditioning
 ✓ Workability
Approach (Continued)

• Revised Preliminary Procedure
• Phase II Experiments
 ✓ Expanded RAP Mixing
 ✓ Laboratory Mix Design
 ✓ Field Validation
 ✓ Limited Fatigue Study
• Final Draft Procedures
• Documentation
Approach (Continued)

- Revised Preliminary Procedure
- Phase II Experiments
 - Expanded RAP Mixing
 - Laboratory Mix Design
 - Field Validation
 - Limited Fatigue Study
- Final Draft Procedures
- Documentation
Expanded RAP Mixing Experiment

- Effect of Time at WMA Compaction Temperature on Degree of Mixing of RAP and New Binders

<table>
<thead>
<tr>
<th>Process</th>
<th>Temperature</th>
<th>Conditioning Time, hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Organic</td>
<td>248/230</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>230/212</td>
<td>X</td>
</tr>
<tr>
<td>Foaming</td>
<td>248/230</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>230/212</td>
<td>X</td>
</tr>
<tr>
<td>Chemical</td>
<td>248/230</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>230/212</td>
<td>X</td>
</tr>
</tbody>
</table>
Mixture Design Experiment

<table>
<thead>
<tr>
<th>No.</th>
<th>N_{design}</th>
<th>Aggregate Absorption</th>
<th>RAP</th>
<th>HMA</th>
<th>WMA Organic</th>
<th>WMA Foaming</th>
<th>WMA Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>High</td>
<td>Yes</td>
<td>320/310</td>
<td>270/260</td>
<td>225/215</td>
<td>225/215</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>Low</td>
<td>No</td>
<td>320/310</td>
<td>225/215</td>
<td>270/260</td>
<td>270/260</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>Low</td>
<td>Yes</td>
<td>320/310</td>
<td>270/260</td>
<td>270/260</td>
<td>225/215</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>High</td>
<td>No</td>
<td>320/310</td>
<td>225/215</td>
<td>225/215</td>
<td>270/260</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>High</td>
<td>Yes</td>
<td>320/310</td>
<td>225/215</td>
<td>270/260</td>
<td>270/260</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>Low</td>
<td>No</td>
<td>320/310</td>
<td>270/260</td>
<td>225/215</td>
<td>225/215</td>
</tr>
</tbody>
</table>

- Paired t-test to Compare Properties
 - Volumetric
 - Performance
Field Validation

<table>
<thead>
<tr>
<th>Project</th>
<th>Process</th>
<th>Temperature, °F</th>
<th>Mix Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Production</td>
<td>Compaction</td>
</tr>
<tr>
<td>Colorado I-70</td>
<td>HMA Control</td>
<td>280</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Advera</td>
<td>250</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Evotherm DAT</td>
<td>250</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Sasobit</td>
<td>250</td>
<td>230</td>
</tr>
<tr>
<td>Yellowstone National Park</td>
<td>HMA Control</td>
<td>325</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>Advera</td>
<td>275</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Sasobit</td>
<td>275</td>
<td>245</td>
</tr>
<tr>
<td>NY Route 11</td>
<td>LEA</td>
<td>210</td>
<td>205</td>
</tr>
<tr>
<td>PA SR2007</td>
<td>HMA Control</td>
<td>320</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Evotherm DAT</td>
<td>250</td>
<td>230</td>
</tr>
<tr>
<td>PA SR2006 and PA SR2012</td>
<td>HMA</td>
<td>310</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Advera</td>
<td>250</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Gencor Ultrafoam GX</td>
<td>250</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>LEA</td>
<td>210</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Sasobit</td>
<td>250</td>
<td>230</td>
</tr>
<tr>
<td>Monroe, North Carolina</td>
<td>Astec Double Barrel Green</td>
<td>275</td>
<td>260</td>
</tr>
</tbody>
</table>
Major Conclusions

• WMA can be designed with only minor changes to AASHTO R35
 – Specimen fabrication procedures
 – Coating and compactability in lieu of viscosity based mixing and compaction temperatures

• WMA design is challenging for plant foaming process
 – Laboratory foaming devices need improvement
Lab Simulation of Plant Foaming

Laboratory Foaming

Before Mixing

After Mixing
Major Conclusions

• For mixtures using the same aggregates and binders and having binder absorption less than 1 percent
 – Volumetric properties of WMA and HMA are very similar
 – Compactability, moisture sensitivity, and rutting resistance may be different when designed as WMA compared to HMA
• Supports need for design procedure
Volumetric Properties

Design Binder

Absorption
Primary Products

- Draft Appendix to AASHTO R35, *Special Mixture Design Considerations and Methods for Warm Mix Asphalt (WMA)*
- Commentary to Draft Appendix
- Training Materials for Draft Appendix
Draft Appendix to R35

- Equipment for Designing WMA
- WMA Process Selection
- Binder Grade Selection
- RAP in WMA
- Process Specific Specimen Fabrication Procedures
- Evaluations
 - Coating
 - Compactability
 - Moisture Sensitivity
 - Rutting Resistance
- Adjusting the Mixture to Meet Specification Requirements.
Additional Equipment

• Mechanical mixer
 – Type of mixer matters (Planetary vs Bucket)
 – Recommended mixing times and coating criteria based on Planetary mixer

• Low shear mechanical stirrer
 – Blending additives with binder

• Laboratory Foaming Device
 – Designs for plant foaming processes. Currently available devices require improvement
Process Selection

- Numerous Processes
- Consult with Agency and Process Suppliers
- Consider
 - Available performance data
 - Cost of the warm mix additives
 - Planned production and compaction temperatures
 - Planned production rates
 - Plant capabilities
 - Modifications
Binder Grade Selection

• Same as HMA
 – Field validation did not support high temperature grade bumping

• Note that grade bumping may be required to meet rutting resistance criteria
Recovered Binder Grade

High Temperature

Low Temperature

Advanced Asphalt Technologies, LLC

“Engineering Services for the Asphalt Industry”
RAP

• High temperature grade of RAP should be lower than compaction temperature
 – RAP mixing study
 – MD and VA most RAP grades as PG 88 or 94
 – Compaction temperature should be greater than 94 C (200 F)
Specimen Fabrication Procedures

• Major portion of Appendix
• Generic
 – Additive added to binder
 – Additive added to mixture
 – Wet aggregate mixtures
 – Foamed asphalt mixtures
Evaluations

• Coating
 – One sample
 – Mechanical planetary mixer
 • Mixing times probably different for bucket mixers
 – AASHTO T195, 95 percent of coarse aggregate particles fully coated
Evaluations

• Compactability
 – Four gyratory samples
 – Maximum specific gravity sample
 – STOA 2 hours at compaction temperature
 – Gyrations to 92 % of Gmm at compaction temperature and 30 °C below compaction temperature
 – Ratio of gyrations at 30 °C below compaction temperature to gyrations at compaction temperature should be less than 1.25
Compactability

Temperature

Process
Evaluations

- Moisture Sensitivity
 - AASHTO T283
 - STOA 2 hours at compaction temperature
 - AASHTO M323 requirement of tensile strength ratio > 0.80
Mix Design Study TSR

TSR

Dry Strength

Advanced Asphalt Technologies, LLC
"Engineering Services for the Asphalt Industry"
Field Section TSR

<table>
<thead>
<tr>
<th>Project</th>
<th>Process</th>
<th>Production Temperature, °F</th>
<th>Compaction Temperature, °F</th>
<th>Dry Tensile Strength, psi</th>
<th>Conditioned Tensile Strength, psi</th>
<th>Tensile Strength Ratio, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado I-70</td>
<td>Control</td>
<td>280</td>
<td>260</td>
<td>88.3</td>
<td>80.4</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Advera</td>
<td>250</td>
<td>230</td>
<td>80.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Evotherm</td>
<td>250</td>
<td>230</td>
<td>71.9</td>
<td>32.4</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Sasobit</td>
<td>250</td>
<td>230</td>
<td>82.8</td>
<td>58.8</td>
<td>71</td>
</tr>
<tr>
<td>Yellowstone National Park</td>
<td>Control</td>
<td>325</td>
<td>315</td>
<td>110.2</td>
<td>87.1</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Advera</td>
<td>275</td>
<td>250</td>
<td>86.4</td>
<td>65.7</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Sasobit</td>
<td>275</td>
<td>245</td>
<td>95.4</td>
<td>72.5</td>
<td>76</td>
</tr>
<tr>
<td>Pennsylvania SR2007</td>
<td>Control</td>
<td>320</td>
<td>300</td>
<td>102.3</td>
<td>92.1</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Evotherm</td>
<td>250</td>
<td>230</td>
<td>86.0</td>
<td>79.1</td>
<td>92</td>
</tr>
<tr>
<td>Pennsylvania SR2006</td>
<td>Control</td>
<td>310</td>
<td>275</td>
<td>104.6</td>
<td>65.6</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Advera</td>
<td>250</td>
<td>230</td>
<td>98.3</td>
<td>34.8</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Gencor</td>
<td>250</td>
<td>230</td>
<td>97.3</td>
<td>42.1</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>LEA</td>
<td>210</td>
<td>195</td>
<td>103.7</td>
<td>86.1</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Sasobit</td>
<td>250</td>
<td>230</td>
<td>97.1</td>
<td>51.8</td>
<td>53</td>
</tr>
<tr>
<td>Monroe, North Carolina</td>
<td>Astec</td>
<td>275</td>
<td>260</td>
<td>164.0</td>
<td>127.7</td>
<td>78</td>
</tr>
</tbody>
</table>
Evaluations

• Rutting Resistance
 – Flow number test, AASHTO TP79
 • NCHRP 9-33 test conditions
 – Unconfined
 – 600 kPa repeated deviator stress
 – 7 percent air voids
 – 50 percent reliability temperature from LTPPBind 3.1
 – STOA 2 hours at compaction temperature
 – 4 specimens
 – Modified NCHRP 9-33 Criteria
 • Reduced aging of WMA
Mix Design Study Rut Resistance

Temperature

Process

Advanced Asphalt Technologies, LLC
"Engineering Services for the Asphalt Industry"
Field Rut Resistance

<table>
<thead>
<tr>
<th>Project</th>
<th>Design Traffic Level, MESAL</th>
<th>Process</th>
<th>Production Temperature, °F</th>
<th>Compaction Temperature, °F</th>
<th>Test Temperature, °F</th>
<th>Flow Number</th>
<th>NCHRP 9-33 Allowable Traffic, MESAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado I-70</td>
<td>< 10</td>
<td>Control</td>
<td>280</td>
<td>260</td>
<td>101</td>
<td>321</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advera</td>
<td>250</td>
<td>230</td>
<td></td>
<td>165</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evotherm</td>
<td>250</td>
<td>230</td>
<td></td>
<td>154</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sasobit</td>
<td>250</td>
<td>230</td>
<td></td>
<td>409</td>
<td>30.7</td>
</tr>
<tr>
<td>Yellowstone National Park</td>
<td>< 3 (est.)</td>
<td>Control</td>
<td>325</td>
<td>315</td>
<td>106</td>
<td>687</td>
<td>48.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advera</td>
<td>275</td>
<td>250</td>
<td></td>
<td>459</td>
<td>33.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sasobit</td>
<td>275</td>
<td>245</td>
<td></td>
<td>1089</td>
<td>72.2</td>
</tr>
<tr>
<td>Pennsylvania SR2007</td>
<td>< 0.3</td>
<td>Control</td>
<td>320</td>
<td>300</td>
<td>126</td>
<td>124</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evotherm</td>
<td>250</td>
<td>230</td>
<td></td>
<td>93</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvania SR2006</td>
<td>< 3</td>
<td>Control</td>
<td>310</td>
<td>275</td>
<td>121</td>
<td>42</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advera</td>
<td>250</td>
<td>230</td>
<td></td>
<td>27</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gencor</td>
<td>250</td>
<td>230</td>
<td></td>
<td>104¹</td>
<td>9.3¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEA</td>
<td>210</td>
<td>195</td>
<td></td>
<td>21</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sasobit</td>
<td>250</td>
<td>230</td>
<td></td>
<td>54</td>
<td>5.2</td>
</tr>
<tr>
<td>Monroe, North Carolina</td>
<td>< 10</td>
<td>Astec</td>
<td>275</td>
<td>260</td>
<td>136</td>
<td>38</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Advanced Asphalt Technologies, LLC

“Engineering Services for the Asphalt Industry”
Adjusting the Mixture

- Coating
 - WMA process supplier
- Compactability
 - WMA process supplier
- Moisture Sensitivity
 - WMA process supplier
- Rutting Resistance
 - Effect of binder grade, filler content, VMA, and N_{design}, from NCHRP Report 567
Additional Research

- Many issues identified in Project 9-43 will be addressed by
 - NCHRP 9-47A, *Properties and Performance of Warm Mix Asphalt Technologies*
 - NCHRP 9-49, *Performance of WMA Technologies: Stage I--Moisture Susceptibility*

- Two mixture design issues may not be addressed
 - WMA mixing procedures for bucket mixers
 - STOA for Moisture Sensitivity and Rutting Resistance
Mixing Procedures for Bucket Mixers

- Mixing times included in Draft Appendix to R35 are based on a planetary mixer
- Bucket mixers are less efficient, but more readily available
- Establish mixing times for bucket mixers
 - Coating as a function of mixing time
 - HMA
 - WMA
Two Step Short-Term Conditioning

- AASHTO R30 for performance testing (4 hours at 135 °C) includes construction aging plus some time in service
 - Basis for many performance test criteria for HMA (flow number, Hamburg, etc)
- Two Step short-term conditioning is needed to use the same criteria for WMA
 - 2 hours at compaction temperature to simulate construction
 - Extended time at service temperature to simulate early aging
Questions/ Suggestions

Ramon Bonaquist, P.E.
Chief Operating Officer
Advanced Asphalt Technologies
108 Powers Court, Suite 100
Sterling, VA 20166
703-444-4200
aatt@erols.com