Simple Performance Test System (SPT)

What is it?

How can I use it?
Outline

• What is the SPT?
• Why Was It Developed?
• Practical Applications
 – Pavement Design
 – Mix Performance
 – RAP
What is the SPT?

- Servo-Hydraulic Machine
- HMA Testing
 - Mix Design
 - Structural Design
 - Evaluation

Most Useful Tool Available for Evaluating HMA!
SPT Capabilities

• Three Performance Related Tests
 – Dynamic Modulus
 – Repeated Load
 – Creep

• Temperature Control
 – 4 to 60 °C

• With and Without Confinement
 – 210 kPa Max

• Fatigue Test Under Development
Key SPT Features

• Rugged
 – Proven Hydraulic System

• Automated Testing Cell
 – Temperature
 – Confining Pressure

• Easy to Install Instrumentation

• Standard Software
 – Testing and Analysis
 – Data Quality

• Technician Friendly
Why Do We Need the SPT?

- Test to Indicate How a Mix Will Perform
 - Rutting
 - Cracking

- Uses
 - Identify Inferior Mixtures
 - Structural Design
 - Evaluations
SHRP Mixture Tests

• Shear Test AASHTO TP7
 – Modulus
 – Permanent Deformation
• Flexural Fatigue AASHTO TP8
 – Fatigue Cracking
• Indirect Tensile Test AASHTO TP9
 – Thermal Cracking
Issues With SHRP Products

• High Costs
 – Equipment
 – Training

• Used With Performance Models
 – Errors
 – Not Calibrated
 – Not User Friendly

• Change The Way We Do Business
 – Engineer Mixtures to Perform
Recommended SPT’s

- Dynamic Modulus
 - Rutting
 - Cracking
- Repeated Load Test
 - Rutting
- Creep Test
 - Rutting
Repeated Load Test

- Rutting
 - Min FN at High Temp
Advantages

• Dynamic Modulus
 – Used in Structural Design
 – Addresses Rutting and Cracking

• Repeated Load
 – Potentially Best Simulation for Rutting

• Creep
 – Simple Test Equipment
 – Minimal Training
SPT Uses

• Dynamic Modulus Master Curve for Structural Design
 – AASHTO MEPDG

• Mixture Design
 – NCHRP Project 9-33 “Mix Design Manual for Hot Mix Asphalt”

• Material Evaluations
 – Homogenity of RAP Mixtures
Pavement Structural Design

- AASHTO Mechanistic-Empirical Pavement Design Guide
 - HMA Characterized by a Dynamic Modulus Master Curve
 - Plant Aged Conditions
 - Modulus Needed
 - Stress-Strain Analysis
 - Rutting Model
 - Fatigue Cracking Model
Evaluate Rutting Resistance
Repeated Load Test

Flow Number = Minimum Permanent Strain Rate
NCHRP 9-33 Tentative Criteria

• Stress Level
 - 600 kPa (87 psi)
 - Database of Mixtures Tested by FHWA

• Temperature
 - 50% Reliability Design Temperature From LTTPPBind 3.1

• Short Testing Time
NCHRP 9-33 Tentative Criteria

Estimated Maximum MESALs

<table>
<thead>
<tr>
<th>MESAL</th>
<th>Flow Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>400</td>
</tr>
<tr>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td>30</td>
<td>900</td>
</tr>
<tr>
<td>100</td>
<td>1500</td>
</tr>
<tr>
<td>300</td>
<td>2200</td>
</tr>
</tbody>
</table>
RAP Mixtures
Mixture Homogenity

- How Well Does the RAP/RAS Binder Mix with the New Binder?
 - Black Rock
 - Complete Mixing

- Process Specific
 - Plant Type
 - Plant Operations
 - RAP/RAS Processing
One Tool

- Dynamic Modulus Data Can Be Used to Evaluate RAP and RAS Mixtures
 - Test Is Highly Sensitive to Binder Stiffness
 - Assess Degree of Mixing of New and Recycled Binders
 - Interpreted to Estimate the Effective Grade of the Combined Binder
 - Relatively Easy to Perform with the Simple Performance Test System
9.5 mm With PG 64-22 + 5% RAS, Batch Plant

![Graph showing the relationship between Binder G* (kPa) and Reduced Frequency (rad/sec). The graph compares data from the mix and recovered binder.]
19.0 mm With PG 64-22 + 45 %
Fractionated RAP, Double Barrel

Graph showing the relationship between Binder G* (kPa) and Reduced Frequency (rad/sec) for PG 64-22 with 45% RAP from mix modulus and recovered binder.
SPT Summary

- Specifically for HMA Testing
- Three Performance Related Tests
 - Dynamic Modulus
 - Repeated Load
 - Creep
- Fourth Test Under Development
- User Friendly, Second Generation Mixture Performance Testing Equipment
- Extensive National Efforts to Develop and Implement
Questions

Ramon Bonaquist, P.E.
Chief Operating Officer
Advanced Asphalt Technologies
108 Powers Court, Suite 100
Sterling, VA 20166
703-444-4200
aatt@erols.com