RAP in SMA

Ramon Bonaquist, Ph.D., P.E.
Advanced Asphalt Technologies, LLC

Greg Moore
Maryland State Highway Administration
Background

• MSHA and MAA RAP Task Force
 – How Can Overall RAP Usage be Increased?

• Use Low Percentage of RAP in Mixtures Where RAP is Not Permitted
 – SMA
 – Mixtures Requiring PMA
Concerns

• Effect of RAP on PMA
• Effect of RAP on Mixture Performance
• Constructability
2007 Field Project

- SMA With 10 % RAP
- I-270 Near Washington Beltway
- RAP and Virgin Mixtures
- Testing and Analysis
 - Binder Blending Study
 - Mixture Performance Properties
 - Acceptance Properties
Binder Blending Study

• Recover RAP Binder
• Laboratory Blends
 – PG 76-22
 – 0, 15, 25, 50, 100 % RAP
• Binder Properties
 – PG Grade
 – Master Curves
 – Elastic Recovery
 – MSCR
Master Curves

Reduced Frequency at T_r (25°C), rad/sec
Binder Blending Findings

• Performance Grade
 – High Temperature Improves
 – Low Temperature Worsens
 – Intermediate Temperature Critical

• Elastic Recovery
 – Decreases Rapidly With Increasing RAP

• MSCR
 – Rutting Resistance and Recovery Improves
Mixture Performance Properties

- **Dynamic Modulus**
 - Plant Aged
 - LTOA

- **Flow Number**
 - Plant Aged

- **Continuum Damage Fatigue**
 - LTOA
Plant Aged Dynamic Modulus

Advanced Asphalt Technologies, LLC

"Engineering Services for the Asphalt Industry"
LTOA Dynamic Modulus

LTOA Without RAP
LTOA With RAP

Reduced Frequency, Hz

Temperature, C

Log Shift Factor

E*, ksi
Continuum Damage Fatigue

Reduced Cycles vs. Damage $|E^*/E^*|_{Initial}$

- Blue line: Without RAP
- Red line: With RAP
Mixture Performance Findings

• Dynamic Modulus
 – RAP Increases Plant Aged Stiffness
 – LTOA Stiffness Similar

• Flow Number
 – RAP Improves Rutting Resistance

• Fatigue
 – Fatigue Resistance Similar
Acceptance Properties

• Project Averages
 – AC
 – Gradation
 – In-Place Density

• Estimated Performance
 – Permeability
 – Rutting Resistance
 – Fatigue Resistance
Project Averages

<table>
<thead>
<tr>
<th>Property</th>
<th>Without RAP</th>
<th>With RAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>Asphalt Content, %</td>
<td>6.6</td>
<td>0.23</td>
</tr>
<tr>
<td>Minus 200, %</td>
<td>8.7</td>
<td>1.24</td>
</tr>
<tr>
<td>In-Place Density, %</td>
<td>95.5</td>
<td>0.58</td>
</tr>
</tbody>
</table>
NCHRP Report 567

• Models relating engineering and performance properties to volumetric properties

<table>
<thead>
<tr>
<th>V_a</th>
<th>V_{be}</th>
<th>V_{agg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMA</td>
<td></td>
<td>Compaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aggregate</td>
</tr>
</tbody>
</table>
NCHRP Report 567 Relationships

- **Permeability**
 - Air Voids
 - Gradation

- **Rutting Resistance**
 - Binder Stiffness
 - Gradation
 - Design Compactive Effort
 - In-Place Density

- **Fatigue Resistance**
 - Effective Binder Content
 - Design Compactive Effort
 - In-Place Density
Permeability

- Very Low for Both Mixtures for All Lots
 - High In-Place Density
 - High Filler Content
Rutting Resistance

Estimated Rut Depth, mm/MESAL

Lot Number

Without RAP
With RAP

Advanced Asphalt Technologies, LLC
"Engineering Services for the Asphalt Industry"
Effect of In-Place Density

Relative Fatigue Life, % of Design

Pavement Density

Without RAP
With RAP

94.5 95.0 95.5 96.0 96.5 97.0 97.5

Pavement Density
Acceptance Findings

- Project Averages
 - Similar for Both Mixtures

- Permeability
 - Very Low for Both Mixtures
 - Excellent In-Place Density

- Rutting Resistance
 - Improved for RAP Mixture
 - Higher Binder Stiffness

- Fatigue Resistance
 - Similar for Both Mixtures
 - Increases with In-Place Density
Overall Conclusions

• RAP Binder Does Affect Properties of PMA
 – Formulate PMA for Use With RAP?

• Increased Plant Aged Stiffness
 – Improved Rutting Resistance

• Similar Long Term Aged Stiffness
 – Similar Fatigue Life

• Similar Acceptance Properties
Questions?

Ramon Bonaquist
Advanced Asphalt Technologies, LLC
108 Powers Court, Suite 100
Sterling, VA 20166
703-444-4200
aatt@erols.com