Warm Mix Asphalt
SCAN
May – June 2007
Norway-Germany-Belgium-France
CHANGE:
The dogmas of the quiet past are inadequate to the stormy present... as our case is new, so we must think anew and act anew.
Our Visit

- Background
- Warm Mix Technologies
- European Experience
- SCAN Findings
- Implementation Direction
What’s the Purpose of a SCAN Tour?

• Provide the opportunity to access innovation

• Joint Program… FHWA, AASHTO, NCHRP, and Industry
What is WMA?

- Allows reduction of temperatures at which asphalt mixes are produced and placed
 - Reduces viscosity at lower temps
 - Allowing the complete coating of aggregate
Issues of Interest

The purpose of the SCAN was to investigate innovative technologies and policies related to WMA.

• WMA processes
• Mix design & construction practices
• WMA performance
• Limitations
• Benefits
Our Team

- Eric Harm, chairman
- John D’Angelo, co-chairman
- Gaylon Baumgardner
- John Bartoszek
- Matthew Corrigan
- Jack Cowsert
- Tom Harman
- Mostafa (Moe) Jamshidi
- Wayne Jones
- Dave Newcomb
- Brian Prowell, reporter
- Ron Sines
- Bruce Yeaton

- Illinois DOT
- FHWA
- Paragon Technical Services
- Payne & Dolan
- FHWA
- North Carolina DOT
- FHWA
- Nebraska DOT
- Asphalt Institute
- NAPA
- Adv. Materials Services LLC
- P.J. Keating
- Maine DOT
2007 WMA Scan Team
Who Did We Visit?

Oslo, Norway

Brussels, Belgium

Köln, Germany

Paris, France

Frankfurt, Germany

Nantes, France
What Did the Scan Team Do?
Factors Driving European Development of WMA

- The environment and sustainable development concerns, “Green Construction”
 - Reduction in energy consumption
 - Reduction in CO₂ emissions

- Extension of paving season and potential for longer haul distances

- Improvement in field compaction

- Welfare of workers, particularly with Gussasphalt, which is not used in the US
European Experience
The PUSH for Implementation

- Norway
 - Contractor/Supplier Driven

- Germany
 - Contractor Driven
 - Bitumen Forum
 - Gussasphalt (Fumes)

- France
 - Contractor Driven/Agency Supported
 - Sustainable Technologies

- Netherlands
 - Contractor Driven
What is Gussasphalt?

Also called mastic asphalt, Gussasphalt is not SMA. It is a binder rich mixture placed at 0% voids with coarse aggregate rolled into the surface. Typically placed at 450°F.
European Mix Design Practices

- Mix design practices varied from country to country
- Some gyratory, some Marshall
- Some empirical, some fundamental
- All used performance tests!
European Standards - Marking
Road Materials CE TC227

User Needs
Surface Characteristics
Asphalt Pavement (In Situ)
Asphalt Mixture
Constitutive Materials
WMA Technologies

- Organic Additives
- Foaming Systems w/ Stabilizers
- Emulsion Systems
- Others…
WMA Technologies

- **Organic, Wax-like additives**
 - Sasobit® – Sasol International
 - Asphaltan B – Romanta
 - Fatty Acid Amides – Licomont S 100

- **Foaming Processes**
 - Aspha-min zeolite – MHI/Eurovia
 - Low Energy Asphalt – Fairco/Eiffage Travaux Publics
 - WAM Foam – Kolo Veidekke/Shell/BP
 - LEAB® – BAM

- **Emulsion Based**
 - Evotherm™ – MeadWestvaco

- **Vegetable based synthetic binders**

- **Emerging US Technologies**
Classification of WMA by Temperature Range

- Latent Heat of Vaporization
- Heating
- Vaporization
- Drying

Temperature, °F

- Cold Mix
- Warm Asphalt
- Half-Warm Asphalt
- WMA
- HMA

I Fuel/Ton
Placement and Compaction

“Business as usual”
Primarily use:
• Heavy, tamping bar, vibratory screed pavers
• Steel-wheel vibratory and static rollers
• Workability generally good
Performance of WMA

Rv152, Hp3, Km 0.046-2.339
Akershus

- 90 % value
- Mean value

Date

Rut depth (mm)
Performance of WMA

• Consensus of European Countries that WMA should provide equal or better performance than HMA
 – Norway – performance mixed, problems not attributed to WMA
 – Germany – performance same or better, developed guidelines to allow use of waxes and zeolite
 – France – toll road, district, and city of Paris pleased with performance to date
Benefits of WMA

• Reduced Emissions
• Reduced Fuel Usage
• Paving Benefits
 – Pave in cool weather and still obtain density
 – Haul mix longer distances and still have workability
 – Improved compaction
 – Facilitate deep patches
 – Ability to use more RAP
• Reduced Worker Exposure
Reduced Emissions

- CO_2 reduced 30-40%
- SO_2 reduced 35%
- VOC reduced 50%
- CO reduced 10-30%
- NO_x reduced 60-70%
- Dust reduced 20-25%
Reduced Emissions

- CO
- SO₂
- VOC
- CO
- NOx
- Dust

Percent

Reduced emissions of CO₂, SO₂, VOC, CO, NOx, and Dust are shown in the diagram. The percentages range from -20 to -80, indicating significant reductions.
Benefits of WMA

No Fugitive Emissions
SCAN Challenges
Adapt technologies from low production European batch/drum plants to higher production plants used in the US
Coarse Aggregate must be DRY

- Aggregates used in Europe have relatively low water absorptions, < 2%
- Aggregates routinely used in the US have higher water absorptions
- Best Practices should be used to minimize the moisture content in aggregate
Initial product approval; how do we sort out the good products from the bad?
Products should be approved on a national or at least a regional basis

- German agencies, industry, and academia have jointly developed a “Merkblatt” or guidelines for the use of WMA

- In France, SETRA performs certifications of new products. Cooperatively supported between agency and industry
Individual Contractors are going to have to determine which WMA process will work over the widest range of applications. In the past changes have been mandated by agencies. In Europe, contractors have staffs who routinely do research to develop new products.
The overall performance of WMA must be as good as HMA. On a life-cycle basis, if WMA does not perform as well, there will not be energy savings or reduced emissions in the long run.

- Build sections with HMA controls
- Data collection guidelines
- Monitor for 3 to 5 years
Implementation Goals

• WMA should be an **acceptable alternative** to HMA at the Contractor’s discretion, provided the WMA meets applicable HMA specifications.
Implementation Goals

• An **approval system** needs to be developed for new WMA technologies. The approval system should be based on performance testing and supplemented by field trials.
 – WMA TWG should lead the development of a performance based evaluation plan for new WMA products.
 – Realistically, such a system is needed for a broader range of modifiers/technologies used in HMA.
Implementation Goals

- The WMA SCAN Team will provide technology transfer of the information gained through presentations, articles, and reports.
- Best practices need to be implemented for handling and storing aggregates to minimize moisture content, burner adjustment, and WMA in general or specific technologies.
Implementation Goals

• Encourage more field trials with:
 – Higher traffic
 – Larger size with representative production of WMA
 – Built in conjunction with a control section
 – Monitored for a minimum of three years by the agency
 – Data collection guidelines, developed by the WMA TWG can be found at:
 http://www.hotmix.org/view_article.php?ID=537

• The factors affecting the economic viability of WMA need to be identified and tracked.
Conclusions

- There is a consensus among the WMA SCAN Team that WMA is a viable technology and that US Agencies and the HMA Industry need to cooperatively pursue this path.

- The US has already made great strides in evaluating WMA, thanks in part to Public-Private Partnerships like the WMA TWG and the WMA SCAN Tour.
Thank You!