Heated Reclaimed Asphalt Pavement Material and Warm Mix Asphalt for Use in Recycled Hot Mix Asphalt

Rajib Mallick, Julie Bradley
Worcester Polytechnic Institute (WPI)

Rick Bradbury, Maine Department of Transportation (MDOT)
Content

- Background
- Needs
- Objectives
- Materials
- Scope – mix, tests
- Results
- Discussion
- Conclusions and recommendations
Background

- Most of MDOT’s 21,000 miles of road systems consist of low to medium volume roads.
- MDOT has been experimenting with different types of recycled materials.
- Factors include cost, resistance to moisture, compactibility, effect of construction on traffic, opening delays and structural strength.
Recycling Options

- Both FDR and PMRAP processes use “old” materials
- PMRAP material is screened prior to blending - achieve particle size quality
- On projects that require significant realignment or grade change, PMRAP is the choice
- Needs three to seven days for curing, prior to the application of HMA overlay
Needs to Improve PMRAP

- Improve the dispersion of asphalt emulsion on the RAP and hence associated proprieties such as density and resistance to moisture
- Improve its compactibility
- Maintain a relatively low temperature in the mixing and compaction process to keep expenses at a relatively low level
- Shorten the waiting time prior to the application of HMA overlay
Objectives

• To evaluate several options and determine the most appropriate method of recycling

• Specifically the objectives were to compare workability, compactibility, stiffness and resistance to moisture damage
Concepts

• The following two concepts were selected for this experimental study:

• 1. Heating the RAP prior to mixing with the emulsion (MS2) in the PMRAP process

• 2. Using the RAP (with a PG 64-28 grade asphalt binder) at a lower mixing temperature, using the concept of Warm Mix Asphalt
Warm Mix Asphalt Additive-Sasobit

- Using a recycled HMA \rightarrow superior mix
- Use of conventional mixing temperatures would lead to production problems
- If the proper use of Sasobit allows mixing and compaction at a relatively lower temperature, then the use of recycled HMA would provide an attractive alternative
- Key requirement is that good performance must be obtained
Scope

- Preparing different mixes with RAP (100 % RAP), compacting them and testing samples
- RAP material from Westbrook, Maine
- The RAP was tested for moisture and asphalt content as well as gradation
- Optimum content determined on the basis of density/voids
<table>
<thead>
<tr>
<th>Property</th>
<th>Sample</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture content</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average: 1.8</td>
</tr>
<tr>
<td>Asphalt Content</td>
<td>1</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average: 5.5</td>
</tr>
<tr>
<td>Sieve Size, mm</td>
<td>Percent Passing</td>
<td>Percent Passing</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Sample 1</td>
<td>Sample 2</td>
</tr>
<tr>
<td>37.5</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>19.5</td>
<td>84</td>
<td>86</td>
</tr>
<tr>
<td>12.5</td>
<td>77</td>
<td>81</td>
</tr>
<tr>
<td>9.5</td>
<td>59</td>
<td>64</td>
</tr>
<tr>
<td>4.75</td>
<td>47</td>
<td>52</td>
</tr>
<tr>
<td>2.36</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>1.18</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>0.6</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>0.3</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>0.15</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0.075</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Materials

- A MS2 emulsion with a base grade of PG 64-28
- A PG 64-28 grade asphalt binder
- An initial optimum of 2 percent emulsion was selected.
<table>
<thead>
<tr>
<th>Mix</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAP+Emulsion at 60°C</td>
<td>Unheated RAP was mixed with Emulsion heated to 60°C; Two different mixes were produced – one with 2 % emulsion and the other with 3 % emulsion.</td>
</tr>
<tr>
<td>Heated RAP+Emulsion at 60°C</td>
<td>Two different mixes were produced – one with RAP and Emulsion heated to 60°C and the other with RAP heated to 110°C and the emulsion to 60°C.</td>
</tr>
<tr>
<td>Heated RAP+Asphalt Binder+1.5% Sasobit- 125°C</td>
<td>Both asphalt binder and RAP were heated to 125°C, and 1.5 % Sasobit was mixed with the asphalt before mixing it with the RAP; 2 % asphalt binder was used.</td>
</tr>
<tr>
<td>Heated RAP+Asphalt Binder+1% Sasobit- 125°C</td>
<td>Both asphalt binder and RAP were heated to 125°C, and 1% Sasobit was mixed with the asphalt before mixing it with the RAP; 2 % asphalt binder was used.</td>
</tr>
<tr>
<td>Heated RAP+Asphalt Binder-150 °C</td>
<td>Both RAP and Asphalt binder were heated to 150°C, and then mixed at 2 % asphalt content.</td>
</tr>
</tbody>
</table>
Mix RAP and emulsion/asphalt/sasobit mix in 15 kg buckets

Test one bucket at intervals of 15 minutes for workability for 2 hours

Take three 2,000 gram samples and compact to 50 gyrations – note bulk specific gravity

Lay the mix in the mold and spread evenly in the mold with a spreader

Note thickness after every 10 passes

Compact with a vibratory roller until thickness does not change significantly with roller passes (thickness does not decrease more than 1/4 inch (6 mm) after 10 passes)

• Test for in-place stiffness
• If possible take core samples of the material for testing – bulk specific gravity, resilient modulus and indirect tensile strength
Workability

- Torque tester built and evaluated on the basis of results reported in Reference NCAT Report 03-03.
- Torque needed to move a paddle through a mix inside a bucket at different times after mixing - higher the torque lower is the workability.
- Found to be sensitive to the NMAS and the temperature.
- Paddle was rotated through 12 kg batch -- one full circle using the torque wrench -- repeated three more times.
- Repeated different times after mixing, and the temperature of the mix was noted at each reading.
- The torque values were converted to a “workability” by multiplying the inverse of the average torque by 1,000.
Compactibility

- Slabs were compacted by partitioning a 2.7 m by 0.9 m mold, and using a vibratory roller.
- Each slab - 0.9 m long, 0.9 m wide and 0.125 m thick.
- Roller assembly -- 0.45 m diameter by 0.9 m steel drum with a 8.9 kN 50/60Hz electric vibrator mounted inside it.
- The sides of the mold were marked for reading thickness during compaction.
\[\log(CBR) = 2.20 - 0.71 \times (\log(DCP))^{1.5} \]

\[M = 10 \times CBR \]
2% Emulsion

![Graph showing temperature and workability for 2% emulsion over time.]

3% Emulsion

![Graph showing temperature and workability for 3% emulsion over time.]

Solid line → workability
RAP-60°C+3% Emulsion

RAP-110°C+3% Emulsion

Solid line → workability
Gyratory Compacted Samples

Mix

- RAP-150C + 2% AC-150oC
- RAP-125C+ 2% AC+1%Sasobit-125oC
- RAP-125C+ 2% AC+1.5%Sasobit-125oC
- RAP-110oC+3%Emulsion
- RAP-60C+3%Emulsion
- 3% emulsion
- 2 % emulsion

Coefficient of Variation , % of Bulk Specific Gravity
Samples Cored from Slabs

Mix

- RAP-150C + 2% AC-150oC
- RAP-125C+ 2% AC+1% Sasobit-125oC
- RAP-125C+ 2% AC+1.5% Sasobit-125oC
- RAP-110oC+3% Emulsion

Coefficient of Variation, % of Bulk Specific Gravity

Samples Cored from Slabs
Resilient Modulus

- 2% Emulsion
- 3% Emulsion
- RAP 110C
- Sasobit 1.5%
- Sasobit 1%
- HMA

In-Place Seismic Modulus

- RAP 110C
- Sasobit 1.5%
- Sasobit 1%
- HMA

Diff. colors ➔ statistically significant difference
Dry Tensile Strength

- RAP 110C: 300 kPa
- Sasobit 1%: 600 kPa
- HMA: 1200 kPa

Conditioned Tensile Strength

- RAP 110C: 400 kPa
- Sasobit 1%: 700 kPa
- HMA: 1200 kPa

Diff. colors → statistically significant difference
Sasobit 1.5 % versus 1 %

- Moduli of the samples from RAP+1.5% Sasobit are lower than the moduli of the samples from RAP+1%
- RAP+1.5% Sasobit cores showed cracks on the surface.
- Cracks were formed most likely during the compaction of the slab, due to fall in temperature and increase in stiffness of the mix.
- Most likely, the mix would have produced superior results if the compaction was completed above 115°C.
Conclusions

- Heating the RAP prior to mixing with emulsion improves workability, compactibility and stiffness of the mix.
- For emulsion mixes, RAP heated to 110°C produced mixes with significantly better properties than mixes with unheated RAP, at similar emulsion content.
- The heated RAP mix shows lower variability in bulk specific gravity and better stiffness and strength.
Conclusions

- Use of Sasobit with asphalt binder at a mixing temperature of 125°C produced mixes with workabilities and compactibilities that are lower but close to those of a mix with neat asphalt binder, mixed at 150°C.
- No significant difference was found between stiffness and retained strength values of asphalt binder mixes with and without Sasobit.
- The dispersion of the asphalt binder is suspected to improve with the use of Sasobit at lower temperatures.
Conclusions

• For a mixing temperature of 125°C, the use of 1% Sasobit, in terms of total asphalt, provided a mix with better properties, compared to a mix with 1.5% Sasobit. However, the mix with 1.5% Sasobit showed much better workability.

• There seems to be a significant advantage in using heated RAP and/or Sasobit in reducing temperature for using asphalt binder in recycling of HMA.
Recommendations

• A field project to evaluate emulsion and Sasobit mixes along with HMA should be initiated.

• The use of heated RAP (110°C) with emulsion, and 1 % and 1.5 % Sasobit with asphalt binder are recommended.
ACNOWLEDGEMENTS

• Mr. Jeremy Day, Sasolwax,
• Mr. Jim Hanley, Pike Industries,
• Mr. Ronnie Tardiff, Aggregate Industries
• Mr. Dale Peabody, Maine DOT
• Ms. Laura Rockett, Mr. Don Pellegrino and Mr. Dean Diagnault, WPI.
• Mr. Graham Hurley and Mr. Brian Prowell, NCAT
Thank You!